Suppr超能文献

情绪调节神经发育的网络架构特征。

Characterizing the Network Architecture of Emotion Regulation Neurodevelopment.

机构信息

Department of Psychology, University of California, Los Angeles, CA 90095, USA.

Department of Psychology, Harvard University, Cambridge, MA 02138, USA.

出版信息

Cereb Cortex. 2021 Jul 29;31(9):4140-4150. doi: 10.1093/cercor/bhab074.

Abstract

The ability to regulate emotions is key to goal attainment and well-being. Although much has been discovered about neurodevelopment and the acquisition of emotion regulation, very little of this work has leveraged information encoded in whole-brain networks. Here we employed a network neuroscience framework to parse the neural underpinnings of emotion regulation skill acquisition, while accounting for age, in a sample of children and adolescents (N = 70, 34 female, aged 8-17 years). Focusing on three key network metrics-network differentiation, modularity, and community number differences between active regulation and a passive emotional baseline-we found that the control network, the default mode network, and limbic network were each related to emotion regulation ability while controlling for age. Greater network differentiation in the control and limbic networks was related to better emotion regulation ability. With regards to network community structure (modularity and community number), more communities and more crosstalk between modules (i.e., less modularity) in the control network were associated with better regulatory ability. By contrast, less crosstalk (i.e., greater modularity) between modules in the default mode network was associated with better regulatory ability. Together, these findings highlight whole-brain connectome features that support the acquisition of emotion regulation in youth.

摘要

情绪调节能力是实现目标和幸福感的关键。尽管人们已经发现了很多关于神经发育和情绪调节获得的知识,但很少有工作利用了全脑网络中编码的信息。在这里,我们采用网络神经科学框架,在儿童和青少年样本(N=70,34 名女性,年龄 8-17 岁)中,在考虑年龄的情况下,解析情绪调节技能习得的神经基础。我们关注三个关键的网络指标——网络分化、模块性和主动调节与被动情绪基线之间的社区数量差异——发现控制网络、默认模式网络和边缘网络都与情绪调节能力有关,同时控制了年龄因素。控制和边缘网络中的网络分化越大,情绪调节能力越好。关于网络社区结构(模块性和社区数量),控制网络中更多的社区和模块之间更多的串扰(即,模块性更小)与更好的调节能力相关。相比之下,默认模式网络中模块之间的串扰较少(即模块性较大)与更好的调节能力相关。总之,这些发现强调了支持年轻人情绪调节能力获得的全脑连接组特征。

相似文献

引用本文的文献

本文引用的文献

7
Large-scale analysis of test-retest reliabilities of self-regulation measures.大规模分析自我调节措施的重测信度。
Proc Natl Acad Sci U S A. 2019 Mar 19;116(12):5472-5477. doi: 10.1073/pnas.1818430116. Epub 2019 Mar 6.
9
The conceptual structure of face impressions.面部印象的概念结构。
Proc Natl Acad Sci U S A. 2018 Sep 11;115(37):9210-9215. doi: 10.1073/pnas.1807222115. Epub 2018 Aug 23.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验