Suppr超能文献

通过模拟评估解决蛋白质纳米晶体辐射损伤断层扫描图像结构的挑战。

Challenges in solving structures from radiation-damaged tomograms of protein nanocrystals assessed by simulation.

机构信息

Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.

Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.

出版信息

Acta Crystallogr D Struct Biol. 2021 May 1;77(Pt 5):572-586. doi: 10.1107/S2059798321002369. Epub 2021 Apr 14.

Abstract

Structure-determination methods are needed to resolve the atomic details that underlie protein function. X-ray crystallography has provided most of our knowledge of protein structure, but is constrained by the need for large, well ordered crystals and the loss of phase information. The rapidly developing methods of serial femtosecond crystallography, micro-electron diffraction and single-particle reconstruction circumvent the first of these limitations by enabling data collection from nanocrystals or purified proteins. However, the first two methods also suffer from the phase problem, while many proteins fall below the molecular-weight threshold required for single-particle reconstruction. Cryo-electron tomography of protein nanocrystals has the potential to overcome these obstacles of mainstream structure-determination methods. Here, a data-processing scheme is presented that combines routines from X-ray crystallography and new algorithms that have been developed to solve structures from tomograms of nanocrystals. This pipeline handles image-processing challenges specific to tomographic sampling of periodic specimens and is validated using simulated crystals. The tolerance of this workflow to the effects of radiation damage is also assessed. The simulations indicate a trade-off between a wider tilt range to facilitate merging data from multiple tomograms and a smaller tilt increment to improve phase accuracy. Since phase errors, but not merging errors, can be overcome with additional data sets, these results recommend distributing the dose over a wide angular range rather than using a finer sampling interval to solve the protein structure.

摘要

结构测定方法是解析蛋白质功能基础的原子细节所必需的。X 射线晶体学为我们提供了大多数蛋白质结构的知识,但受到需要大而有序的晶体和相位信息丢失的限制。快速发展的连续飞秒晶体学、微电子衍射和单颗粒重建方法通过能够从纳米晶体或纯化的蛋白质中收集数据来规避这些限制中的第一个限制。然而,前两种方法也存在相位问题,而许多蛋白质的分子量低于单颗粒重建所需的阈值。蛋白质纳米晶体的冷冻电子断层扫描有可能克服主流结构测定方法的这些障碍。在这里,提出了一种数据处理方案,该方案结合了 X 射线晶体学的例程和为解决纳米晶体断层扫描图像中的结构而开发的新算法。该流水线处理针对周期性标本断层扫描采样的特定图像处理挑战,并使用模拟晶体进行验证。还评估了该工作流程对辐射损伤影响的容忍度。模拟表明,在更宽的倾斜范围以方便合并来自多个断层扫描的数据和更小的倾斜增量以提高相位精度之间存在权衡。由于相位误差,但不是合并误差,可以通过附加数据集来克服,因此这些结果建议在更宽的角度范围内分配剂量,而不是使用更精细的采样间隔来解决蛋白质结构。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dc1b/8098477/8921fde726d5/d-77-00572-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验