Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America.
PLoS One. 2012;7(1):e30249. doi: 10.1371/journal.pone.0030249. Epub 2012 Jan 24.
The dynamic personalities and structural heterogeneity of proteins are essential for proper functioning. Structural determination of dynamic/heterogeneous proteins is limited by conventional approaches of X-ray and electron microscopy (EM) of single-particle reconstruction that require an average from thousands to millions different molecules. Cryo-electron tomography (cryoET) is an approach to determine three-dimensional (3D) reconstruction of a single and unique biological object such as bacteria and cells, by imaging the object from a series of tilting angles. However, cconventional reconstruction methods use large-size whole-micrographs that are limited by reconstruction resolution (lower than 20 Å), especially for small and low-symmetric molecule (<400 kDa). In this study, we demonstrated the adverse effects from image distortion and the measuring tilt-errors (including tilt-axis and tilt-angle errors) both play a major role in limiting the reconstruction resolution. Therefore, we developed a "focused electron tomography reconstruction" (FETR) algorithm to improve the resolution by decreasing the reconstructing image size so that it contains only a single-instance protein. FETR can tolerate certain levels of image-distortion and measuring tilt-errors, and can also precisely determine the translational parameters via an iterative refinement process that contains a series of automatically generated dynamic filters and masks. To describe this method, a set of simulated cryoET images was employed; to validate this approach, the real experimental images from negative-staining and cryoET were used. Since this approach can obtain the structure of a single-instance molecule/particle, we named it individual-particle electron tomography (IPET) as a new robust strategy/approach that does not require a pre-given initial model, class averaging of multiple molecules or an extended ordered lattice, but can tolerate small tilt-errors for high-resolution single "snapshot" molecule structure determination. Thus, FETR/IPET provides a completely new opportunity for a single-molecule structure determination, and could be used to study the dynamic character and equilibrium fluctuation of macromolecules.
蛋白质的动态特性和结构异质性对于其正常功能至关重要。传统的单颗粒重构 X 射线和电子显微镜(EM)方法在测定动态/异质蛋白质的结构方面存在局限性,因为这些方法需要对数千到数百万个不同的分子进行平均处理。冷冻电子断层扫描(cryoET)是一种确定单个独特生物物体(如细菌和细胞)三维(3D)重建的方法,它通过从一系列倾斜角度对物体进行成像。然而,传统的重建方法使用大尺寸的全显微照片,受限于重建分辨率(低于 20Å),尤其是对于小而低对称的分子(<400 kDa)。在这项研究中,我们证明了图像变形和测量倾斜误差(包括倾斜轴和倾斜角误差)的不利影响在限制重建分辨率方面起着主要作用。因此,我们开发了一种“聚焦电子断层扫描重建”(FETR)算法,通过减小重建图像的尺寸来提高分辨率,从而仅包含单个实例的蛋白质。FETR 可以容忍一定程度的图像变形和测量倾斜误差,并且可以通过包含一系列自动生成的动态滤波器和掩模的迭代细化过程来精确确定平移参数。为了描述这种方法,我们使用了一组模拟的 cryoET 图像;为了验证这种方法,我们使用了负染色和 cryoET 的真实实验图像。由于这种方法可以获得单个实例分子/颗粒的结构,因此我们将其命名为单个颗粒电子断层扫描(IPET),作为一种新的强大策略/方法,它不需要给定初始模型、多个分子的分类平均或扩展有序晶格,但可以容忍小的倾斜误差,以实现高分辨率的单个“快照”分子结构测定。因此,FETR/IPET 为单个分子结构测定提供了一个全新的机会,并可用于研究大分子的动态特性和平衡波动。