Shi Dan, Nannenga Brent L, de la Cruz M Jason, Liu Jinyang, Sawtelle Steven, Calero Guillermo, Reyes Francis E, Hattne Johan, Gonen Tamir
Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA.
Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
Nat Protoc. 2016 May;11(5):895-904. doi: 10.1038/nprot.2016.046. Epub 2016 Apr 14.
The formation of large, well-ordered crystals for crystallographic experiments remains a crucial bottleneck to the structural understanding of many important biological systems. To help alleviate this problem in crystallography, we have developed the MicroED method for the collection of electron diffraction data from 3D microcrystals and nanocrystals of radiation-sensitive biological material. In this approach, liquid solutions containing protein microcrystals are deposited on carbon-coated electron microscopy grids and are vitrified by plunging them into liquid ethane. MicroED data are collected for each selected crystal using cryo-electron microscopy, in which the crystal is diffracted using very few electrons as the stage is continuously rotated. This protocol gives advice on how to identify microcrystals by light microscopy or by negative-stain electron microscopy in samples obtained from standard protein crystallization experiments. The protocol also includes information about custom-designed equipment for controlling crystal rotation and software for recording experimental parameters in diffraction image metadata. Identifying microcrystals, preparing samples and setting up the microscope for diffraction data collection take approximately half an hour for each step. Screening microcrystals for quality diffraction takes roughly an hour, and the collection of a single data set is ∼10 min in duration. Complete data sets and resulting high-resolution structures can be obtained from a single crystal or by merging data from multiple crystals.
对于晶体学实验而言,形成大尺寸、高度有序的晶体仍然是深入了解许多重要生物系统结构的关键瓶颈。为了有助于缓解晶体学中的这一问题,我们开发了MicroED方法,用于收集对辐射敏感的生物材料的三维微晶和纳米晶体的电子衍射数据。在这种方法中,将含有蛋白质微晶的液体溶液沉积在涂有碳的电子显微镜网格上,然后将其浸入液态乙烷中进行玻璃化。使用低温电子显微镜为每个选定的晶体收集MicroED数据,在该过程中,随着样品台不断旋转,用极少的电子对晶体进行衍射。本方案提供了关于如何在标准蛋白质结晶实验所得样品中通过光学显微镜或负染电子显微镜识别微晶的建议。该方案还包括有关用于控制晶体旋转的定制设备以及用于在衍射图像元数据中记录实验参数的软件的信息。识别微晶、制备样品以及设置显微镜以收集衍射数据,每个步骤大约需要半小时。筛选微晶以获得高质量衍射大约需要一小时,而收集单个数据集的持续时间约为10分钟。完整的数据集以及由此得到的高分辨率结构可以从单个晶体获得,也可以通过合并多个晶体的数据获得。