文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用面部图像通过深度学习(卷积神经网络)创建用于气管插管困难分类的人工智能模型:一项观察性研究。

Creation of an artificial intelligence model for intubation difficulty classification by deep learning (convolutional neural network) using face images: an observational study.

作者信息

Hayasaka Tatsuya, Kawano Kazuharu, Kurihara Kazuki, Suzuki Hiroto, Nakane Masaki, Kawamae Kaneyuki

机构信息

Department of Anesthesiology, Yamagata University Hospital, Yamagata City, Japan.

Department of Medicine, Yamagata University School of Medicine, Yamagata City, Japan.

出版信息

J Intensive Care. 2021 May 6;9(1):38. doi: 10.1186/s40560-021-00551-x.


DOI:10.1186/s40560-021-00551-x
PMID:33952341
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8101256/
Abstract

BACKGROUND: Tracheal intubation is the gold standard for securing the airway, and it is not uncommon to encounter intubation difficulties in intensive care units and emergency rooms. Currently, there is a need for an objective measure to assess intubation difficulties in emergency situations by physicians, residents, and paramedics who are unfamiliar with tracheal intubation. Artificial intelligence (AI) is currently used in medical imaging owing to advanced performance. We aimed to create an AI model to classify intubation difficulties from the patient's facial image using a convolutional neural network (CNN), which links the facial image with the actual difficulty of intubation. METHODS: Patients scheduled for surgery at Yamagata University Hospital between April and August 2020 were enrolled. Patients who underwent surgery with altered facial appearance, surgery with altered range of motion in the neck, or intubation performed by a physician with less than 3 years of anesthesia experience were excluded. Sixteen different facial images were obtained from the patients since the day after surgery. All images were judged as "Easy"/"Difficult" by an anesthesiologist, and an AI classification model was created using deep learning by linking the patient's facial image and the intubation difficulty. Receiver operating characteristic curves of actual intubation difficulty and AI model were developed, and sensitivity, specificity, and area under the curve (AUC) were calculated; median AUC was used as the result. Class activation heat maps were used to visualize how the AI model classifies intubation difficulties. RESULTS: The best AI model for classifying intubation difficulties from 16 different images was generated in the supine-side-closed mouth-base position. The accuracy was 80.5%; sensitivity, 81.8%; specificity, 83.3%; AUC, 0.864; and 95% confidence interval, [0.731-0.969], indicating that the class activation heat map was concentrated around the neck regardless of the background; the AI model recognized facial contours and identified intubation difficulties. CONCLUSION: This is the first study to apply deep learning (CNN) to classify intubation difficulties using an AI model. We could create an AI model with an AUC of 0.864. Our AI model may be useful for tracheal intubation performed by inexperienced medical staff in emergency situations or under general anesthesia.

摘要

背景:气管插管是确保气道安全的金标准,在重症监护病房和急诊室遇到插管困难并不罕见。目前,需要一种客观的方法,供不熟悉气管插管的医生、住院医师和护理人员在紧急情况下评估插管困难程度。由于先进的性能,人工智能(AI)目前已应用于医学成像领域。我们旨在创建一个人工智能模型,使用卷积神经网络(CNN)从患者面部图像中对插管困难进行分类,该网络将面部图像与实际插管难度联系起来。 方法:纳入2020年4月至8月在山形大学医院计划进行手术的患者。排除面部外观改变、颈部活动范围改变的手术患者,以及由麻醉经验少于3年的医生进行插管的患者。自术后第二天起从患者处获取16张不同的面部图像。所有图像均由麻醉医生判断为“容易”/“困难”,并通过将患者面部图像与插管难度相联系,利用深度学习创建人工智能分类模型。绘制实际插管难度和人工智能模型的受试者工作特征曲线,并计算敏感性、特异性和曲线下面积(AUC);将AUC中位数作为结果。使用类激活热图来可视化人工智能模型如何对插管困难进行分类。 结果:在仰卧位-侧面-闭口-基线位置生成了用于从16张不同图像中分类插管困难的最佳人工智能模型。准确率为80.5%;敏感性为81.8%;特异性为83.3%;AUC为0.864;95%置信区间为[0.731-0.969],表明无论背景如何,类激活热图都集中在颈部周围;人工智能模型识别面部轮廓并确定插管困难程度。 结论:这是第一项应用深度学习(CNN)通过人工智能模型对插管困难进行分类的研究。我们能够创建一个AUC为0.864的人工智能模型。我们的人工智能模型可能有助于无经验的医务人员在紧急情况下或全身麻醉下进行气管插管。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08f9/8101256/504329868a85/40560_2021_551_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08f9/8101256/1d10de06c4c3/40560_2021_551_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08f9/8101256/bce78e6be0a8/40560_2021_551_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08f9/8101256/de8ddf5c9bae/40560_2021_551_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08f9/8101256/8339b63e2d81/40560_2021_551_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08f9/8101256/8f773c94c6dc/40560_2021_551_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08f9/8101256/d0de204c4acd/40560_2021_551_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08f9/8101256/e85815533574/40560_2021_551_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08f9/8101256/f19f71db2b7e/40560_2021_551_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08f9/8101256/504329868a85/40560_2021_551_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08f9/8101256/1d10de06c4c3/40560_2021_551_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08f9/8101256/bce78e6be0a8/40560_2021_551_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08f9/8101256/de8ddf5c9bae/40560_2021_551_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08f9/8101256/8339b63e2d81/40560_2021_551_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08f9/8101256/8f773c94c6dc/40560_2021_551_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08f9/8101256/d0de204c4acd/40560_2021_551_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08f9/8101256/e85815533574/40560_2021_551_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08f9/8101256/f19f71db2b7e/40560_2021_551_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08f9/8101256/504329868a85/40560_2021_551_Fig9_HTML.jpg

相似文献

[1]
Creation of an artificial intelligence model for intubation difficulty classification by deep learning (convolutional neural network) using face images: an observational study.

J Intensive Care. 2021-5-6

[2]
Comparison of Chest Radiograph Interpretations by Artificial Intelligence Algorithm vs Radiology Residents.

JAMA Netw Open. 2020-10-1

[3]
Selection of Convolutional Neural Network Model for Bladder Tumor Classification of Cystoscopy Images and Comparison with Humans.

J Endourol. 2024-10

[4]
Critical element prediction of tracheal intubation difficulty: Automatic Mallampati classification by jointly using handcrafted and attention-based deep features.

Comput Biol Med. 2022-11

[5]
Artificial Intelligence and Its Effect on Dermatologists' Accuracy in Dermoscopic Melanoma Image Classification: Web-Based Survey Study.

J Med Internet Res. 2020-9-11

[6]
A Prospective Observational Study of Technical Difficulty With GlideScope-Guided Tracheal Intubation in Children.

Anesth Analg. 2018-8

[7]
DIY AI, deep learning network development for automated image classification in a point-of-care ultrasound quality assurance program.

J Am Coll Emerg Physicians Open. 2020-3-1

[8]
Application of deep learning to the classification of uterine cervical squamous epithelial lesion from colposcopy images.

Mol Clin Oncol. 2019-12

[9]
Artificial intelligence and machine learning on diagnosis and classification of hip fracture: systematic review.

J Orthop Surg Res. 2022-12-1

[10]
Smartphone-based artificial intelligence using a transfer learning algorithm for the detection and diagnosis of middle ear diseases: A retrospective deep learning study.

EClinicalMedicine. 2022-7-12

引用本文的文献

[1]
Artificial intelligence revolutionizing anesthesia management: advances and prospects in intelligent anesthesia technology.

Front Med (Lausanne). 2025-8-6

[2]
The effect of postoperative weight loss on difficult intubation in bariatric surgery patients: a prospective observational study.

BMC Surg. 2025-8-1

[3]
Artificial intelligence for difficult airway assessment: a protocol for a systematic review with meta-analysis.

BMJ Open. 2025-6-10

[4]
Global trends in artificial intelligence research in anesthesia from 2000 to 2023: a bibliometric analysis.

Perioper Med (Lond). 2025-4-23

[5]
Use of Artificial Intelligence in Difficult Airway Assessment: The Current State of Knowledge.

J Clin Med. 2025-2-27

[6]
Artificial intelligence in anesthesiology: a bibliometric analysis.

Perioper Med (Lond). 2024-12-23

[7]
Unravelling intubation challenges: a machine learning approach incorporating multiple predictive parameters.

BMC Anesthesiol. 2024-12-18

[8]
Voice Analysis as a Method for Preoperatively Predicting a Difficult Airway Based on Machine Learning Algorithms: Original Research Report.

Health Sci Rep. 2024-12-9

[9]
Beyond the stereotypes: Artificial Intelligence image generation and diversity in anesthesiology.

Front Artif Intell. 2024-10-9

[10]
Machine Learning Predictions and Identifying Key Predictors for Safer Intubation: A Study on Video Laryngoscopy Views.

J Pers Med. 2024-8-25

本文引用的文献

[1]
Airway Abnormalities in Patients With Congenital Heart Disease: Incidence and Associated Factors.

J Cardiothorac Vasc Anesth. 2021-1

[2]
Diagnosing Heart Failure from Chest X-Ray Images Using Deep Learning.

Int Heart J. 2020-7-30

[3]
Comparison of Laryngoscopic Views betweenC-MAC™ and Conventional Laryngoscopy in Patients with Multiple Preoperative Prognostic Criteria of Difficult Intubation. An Observational Cross-Sectional Study.

Medicina (Kaunas). 2019-11-27

[4]
Advancing emergency airway management practice and research.

Acute Med Surg. 2019-5-21

[5]
Are «off hours» intubations a risk factor for complications during intubation? A prospective, observational study.

Med Intensiva (Engl Ed). 2018-12

[6]
Deep Convolutional Neural Networks for Endotracheal Tube Position and X-ray Image Classification: Challenges and Opportunities.

J Digit Imaging. 2017-8

[7]
Lack of national consensus in preoperative airway assessment.

Dan Med J. 2016-10

[8]
Techniques and Trends, Success Rates, and Adverse Events in Emergency Department Pediatric Intubations: A Report From the National Emergency Airway Registry.

Ann Emerg Med. 2016-5

[9]
S1 guidelines on airway management : Guideline of the German Society of Anesthesiology and Intensive Care Medicine.

Anaesthesist. 2015-12

[10]
Defining the learning curve for endotracheal intubation using direct laryngoscopy: A systematic review.

Resuscitation. 2016-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索