Suppr超能文献

用于气管插管位置和X射线图像分类的深度卷积神经网络:挑战与机遇

Deep Convolutional Neural Networks for Endotracheal Tube Position and X-ray Image Classification: Challenges and Opportunities.

作者信息

Lakhani Paras

机构信息

Thomas Jefferson University Hospital, Sidney Kimmel Jefferson Medical College, Philadelphia, PA, 19107, USA.

出版信息

J Digit Imaging. 2017 Aug;30(4):460-468. doi: 10.1007/s10278-017-9980-7.

Abstract

The goal of this study is to evaluate the efficacy of deep convolutional neural networks (DCNNs) in differentiating subtle, intermediate, and more obvious image differences in radiography. Three different datasets were created, which included presence/absence of the endotracheal (ET) tube (n = 300), low/normal position of the ET tube (n = 300), and chest/abdominal radiographs (n = 120). The datasets were split into training, validation, and test. Both untrained and pre-trained deep neural networks were employed, including AlexNet and GoogLeNet classifiers, using the Caffe framework. Data augmentation was performed for the presence/absence and low/normal ET tube datasets. Receiver operating characteristic (ROC), area under the curves (AUC), and 95% confidence intervals were calculated. Statistical differences of the AUCs were determined using a non-parametric approach. The pre-trained AlexNet and GoogLeNet classifiers had perfect accuracy (AUC 1.00) in differentiating chest vs. abdominal radiographs, using only 45 training cases. For more difficult datasets, including the presence/absence and low/normal position endotracheal tubes, more training cases, pre-trained networks, and data-augmentation approaches were helpful to increase accuracy. The best-performing network for classifying presence vs. absence of an ET tube was still very accurate with an AUC of 0.99. However, for the most difficult dataset, such as low vs. normal position of the endotracheal tube, DCNNs did not perform as well, but achieved a reasonable AUC of 0.81.

摘要

本研究的目的是评估深度卷积神经网络(DCNN)在区分X线摄影中细微、中等和更明显图像差异方面的功效。创建了三个不同的数据集,包括气管内(ET)管的有无(n = 300)、ET管的低位/正常位置(n = 300)以及胸部/腹部X线片(n = 120)。这些数据集被分为训练集、验证集和测试集。使用Caffe框架,采用了未训练和预训练的深度神经网络,包括AlexNet和GoogLeNet分类器。对ET管有无和低位/正常位置的数据集进行了数据增强。计算了受试者操作特征(ROC)、曲线下面积(AUC)和95%置信区间。使用非参数方法确定AUC的统计差异。预训练的AlexNet和GoogLeNet分类器在区分胸部与腹部X线片时,仅使用45个训练病例就具有完美的准确率(AUC为1.00)。对于更具挑战性的数据集,包括ET管的有无和低位/正常位置,更多的训练病例、预训练网络和数据增强方法有助于提高准确率。用于分类ET管有无的表现最佳的网络仍然非常准确,AUC为0.99。然而,对于最具挑战性的数据集,如ET管的低位与正常位置,DCNN的表现并不理想,但获得了合理的AUC为0.81。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ad7/5537094/bd462e66794b/10278_2017_9980_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验