Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294-0006.
Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294-0006
J Neurosci. 2021 Jun 30;41(26):5747-5761. doi: 10.1523/JNEUROSCI.0119-21.2021. Epub 2021 May 5.
The central noradrenergic (NA) system is critical for the maintenance of attention, behavioral flexibility, spatial navigation, and learning and memory, those cognitive functions lost first in early Alzheimer's disease (AD). In fact, the locus coeruleus (LC), the sole source of norepinephrine (NE) for >90% of the brain, is the first site of pathologic tau accumulation in human AD with axon loss throughout forebrain, including hippocampus. The dentate gyrus is heavily innervated by LC-NA axons, where released NE acts on β-adrenergic receptors (ARs) at excitatory synapses from entorhinal cortex to facilitate long-term synaptic plasticity and memory formation. These synapses experience dysfunction in early AD before cognitive impairment. In the TgF344-AD rat model of AD, degeneration of LC-NA axons in hippocampus recapitulates human AD, providing a preclinical model to investigate synaptic and behavioral consequences. Using immunohistochemistry, Western blot analysis, and brain slice electrophysiology in 6- to 9-month-old wild-type and TgF344-AD rats, we discovered that the loss of LC-NA axons coincides with the heightened β-AR function at medial perforant path-dentate granule cell synapses that is responsible for the increase in LTP magnitude at these synapses. Furthermore, novel object recognition is facilitated in TgF344-AD rats that requires β-ARs, and pharmacological blockade of β-ARs unmasks a deficit in extinction learning only in TgF344-AD rats, indicating a greater reliance on β-ARs in both behaviors. Thus, a compensatory increase in β-AR function during prodromal AD in TgF344-AD rats heightens synaptic plasticity and preserves some forms of learning and memory. The locus coeruleus (LC), a brain region located in the brainstem which is responsible for attention and arousal, is damaged first by Alzheimer's disease (AD) pathology. The LC sends axons to hippocampus where released norepinephrine (NE) modulates synaptic function required for learning and memory. How degeneration of LC axons and loss of NE in hippocampus in early AD impacts synaptic function and learning and memory is not well understood despite the importance of LC in cognitive function. We used a transgenic AD rat model with LC axon degeneration mimicking human AD and found that heightened function of β-adrenergic receptors in the dentate gyrus increased synaptic plasticity and preserved learning and memory in early stages of the disease.
中枢去甲肾上腺素(NA)系统对维持注意力、行为灵活性、空间导航以及学习和记忆至关重要,这些认知功能是早期阿尔茨海默病(AD)首先丧失的。事实上,蓝斑(LC)是大脑中 90%以上去甲肾上腺素(NE)的唯一来源,是人类 AD 中最早出现病理tau 积累的部位,伴有整个前脑的轴突丢失,包括海马体。齿状回(DG)被 LC-NA 轴突大量支配,释放的 NE 在来自内嗅皮层的兴奋性突触上作用于β-肾上腺素能受体(AR),以促进长时程突触可塑性和记忆形成。这些突触在认知障碍之前在早期 AD 中就出现了功能障碍。在 AD 的 TgF344-AD 大鼠模型中,海马体中的 LC-NA 轴突退化与人类 AD 相吻合,为研究突触和行为后果提供了一个临床前模型。通过免疫组织化学、Western blot 分析和脑片电生理学,在 6-9 月龄野生型和 TgF344-AD 大鼠中发现,LC-NA 轴突的丢失与内侧穿通路径-齿状回颗粒细胞突触处β-AR 功能的增强同时发生,这导致这些突触的 LTP 幅度增加。此外,在 TgF344-AD 大鼠中,新物体识别得到促进,该行为需要β-AR,而β-AR 的药理学阻断仅在 TgF344-AD 大鼠中揭示了消退学习的缺陷,这表明在这两种行为中对β-AR 的依赖性更大。因此,TgF344-AD 大鼠在 AD 前驱期β-AR 功能的代偿性增加增强了突触可塑性,并保留了某些形式的学习和记忆。蓝斑(LC)位于脑干的一个脑区,负责注意力和觉醒,首先被阿尔茨海默病(AD)病理破坏。LC 发出轴突到海马体,在那里释放的去甲肾上腺素(NE)调节学习和记忆所需的突触功能。尽管 LC 在认知功能中很重要,但 LC 轴突退化和海马体中 NE 的丢失如何影响突触功能和学习记忆在早期 AD 中还不是很清楚。我们使用了一种具有 LC 轴突退化的转基因 AD 大鼠模型,该模型模拟了人类 AD,并发现齿状回中β-肾上腺素能受体功能的增强增加了突触可塑性,并在疾病的早期阶段保留了学习和记忆。