Suppr超能文献

日本岐阜县结核分枝杆菌菌株的分子分型:使用可变数目串联重复分析。

Molecular Typing of Mycobacterium tuberculosis Strains in Gifu Prefecture, Japan, Using Variable Number Tandem Repeat Analysis.

机构信息

Department of Infectious Diseases, Gifu Prefectural Research Institute for Health and Environmental Sciences, Japan.

出版信息

Jpn J Infect Dis. 2021 Nov 22;74(6):587-591. doi: 10.7883/yoken.JJID.2020.1060. Epub 2021 Apr 30.

Abstract

To investigate the molecular epidemiological characteristics of Mycobacterium tuberculosis strains collected from patients in Gifu Prefecture, Japan, 483 M. tuberculosis clinical isolates were analyzed using Japan Anti-Tuberculosis Association (JATA) 18-variable number tandem repeats (VNTR) between 2015 and 2019. To evaluate the lineage of M. tuberculosis strains, JATA18-VNTR profiles were applied to a maximum a posteriori method. The results revealed that the ancient Beijing subfamily, accounting for 57.3% (277/483) of the strains was the most prevalent M. tuberculosis strain. Furthermore, 18 clusters (GC-1-18) were found by minimum spanning tree analysis. The proportion of clustering strains was 9.9% (48/483), and epidemiological links to these clusters were unclear without GC-6 and GC-18. Meanwhile, interestingly, VNTR profiles of GC-7-9 and GC-14 were indistinguishable from the regional epidemic strains of Nagoya City, which has a strong socioeconomic relationship with Gifu Prefecture, but did not match the nationwide epidemic strains. This study suggests that coordinated analyses within the prefectures with strong socioeconomic relationships are important.

摘要

为了调查日本岐阜县患者分离的结核分枝杆菌菌株的分子流行病学特征,对 2015 年至 2019 年间收集的 483 株结核分枝杆菌临床分离株进行了日本结核病协会(JATA)18 个可变数串联重复(VNTR)分析。为了评估结核分枝杆菌菌株的谱系,采用最大后验法对 JATA18-VNTR 图谱进行了分析。结果显示,古老的北京亚家族(占 57.3%[277/483])是最流行的结核分枝杆菌菌株。此外,通过最小生成树分析发现了 18 个聚类(GC-1-18)。聚类菌株的比例为 9.9%(48/483),由于 GC-6 和 GC-18 不存在,这些聚类的流行病学联系尚不清楚。同时,有趣的是,GC-7-9 和 GC-14 的 VNTR 图谱与与岐阜县具有很强社会经济关系的名古屋市的地区流行株无法区分,但与全国流行株不匹配。本研究表明,与具有很强社会经济关系的县内进行协调分析很重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验