Concordia Institute for Information Systems Engineering, Concordia University, Montreal, QC, H3G 1M8, Canada.
Departments of Electrical and Computer Engineering, and Mechanical and Aerospace Engineering, New York University (NYU), New York, NY, 10003, USA.
Sci Rep. 2021 May 5;11(1):9630. doi: 10.1038/s41598-021-88919-9.
Pathological hand tremor (PHT) is a common symptom of Parkinson's disease (PD) and essential tremor (ET), which affects manual targeting, motor coordination, and movement kinetics. Effective treatment and management of the symptoms relies on the correct and in-time diagnosis of the affected individuals, where the characteristics of PHT serve as an imperative metric for this purpose. Due to the overlapping features of the corresponding symptoms, however, a high level of expertise and specialized diagnostic methodologies are required to correctly distinguish PD from ET. In this work, we propose the data-driven [Formula: see text] model, which processes the kinematics of the hand in the affected individuals and classifies the patients into PD or ET. [Formula: see text] is trained over 90 hours of hand motion signals consisting of 250 tremor assessments from 81 patients, recorded at the London Movement Disorders Centre, ON, Canada. The [Formula: see text] outperforms its state-of-the-art counterparts achieving exceptional differential diagnosis accuracy of [Formula: see text]. In addition, using the explainability and interpretability measures for machine learning models, clinically viable and statistically significant insights on how the data-driven model discriminates between the two groups of patients are achieved.
病理性手震颤(PHT)是帕金森病(PD)和特发性震颤(ET)的常见症状,它会影响手部的目标定位、运动协调和运动动力学。有效治疗和管理这些症状依赖于对受影响个体的正确和及时诊断,其中 PHT 的特征是实现这一目的的重要指标。然而,由于相应症状存在重叠,因此需要高水平的专业知识和专门的诊断方法来正确区分 PD 和 ET。在这项工作中,我们提出了基于数据驱动的[Formula: see text]模型,该模型处理受影响个体手部的运动学,并将患者分为 PD 或 ET。[Formula: see text]在 90 多个小时的手部运动信号上进行了训练,这些信号由来自加拿大安大略省伦敦运动障碍中心的 81 名患者的 250 次震颤评估记录组成。[Formula: see text]的表现优于其最先进的同类产品,达到了卓越的鉴别诊断准确率[Formula: see text]。此外,通过使用机器学习模型的可解释性和可解释性度量,可以获得有关数据驱动模型如何区分两组患者的可行且具有统计学意义的见解。