Department of Medicine, University of Toronto, Toronto, Canada.
Division of Neurology, Edmond J. Safra Program in Parkinson's Disease and Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, UHN, University of Toronto, 399 Bathurst St, 7MacL412, Toronto, ON, M5T 2S8, Canada.
J Neurol. 2022 Nov;269(11):6104-6115. doi: 10.1007/s00415-022-11293-7. Epub 2022 Jul 21.
Patients with essential tremor (ET), Parkinson's disease (PD) and dystonic tremor (DT) can be difficult to classify and often share similar characteristics.
To use ubiquitous smartphone accelerometers with and without clinical features to automate tremor classification using supervised machine learning, and to use unsupervised learning to evaluate if natural clusterings of patients correspond to assigned clinical diagnoses.
A supervised machine learning classifier was trained to classify 78 tremor patients using leave-one-out cross-validation to estimate performance on unseen accelerometer data. An independent cohort of 27 patients were also studied. Next, we focused on a subset of 48 patients with both smartphone-based tremor measurements and detailed clinical assessment metrics and compared two separate machine learning classifiers trained on these data.
The classifier yielded a total accuracy of 74.4% and F1-score of 0.74 for a trinary classification with an area under the curve of 0.904, average F1-score of 0.94, specificity of 97% and sensitivity of 84% in classifying PD from ET or DT. The algorithm classified ET from non-ET with 88% accuracy, but only classified DT from non-DT with 29% accuracy. A poorer performance was found in the independent cohort. Classifiers trained on accelerometer and clinical data respectively obtained similar results.
Machine learning classifiers achieved a high accuracy of PD, however moderate accuracy of ET, and poor accuracy of DT classification. This underscores the difficulty of using AI to classify some tremors due to lack of specificity in clinical and neuropathological features, reinforcing that they may represent overlapping syndromes.
特发性震颤(ET)、帕金森病(PD)和肌张力障碍性震颤(DT)患者难以分类,且常具有相似特征。
利用无处不在的智能手机加速度计,结合临床特征,采用监督机器学习实现震颤自动分类,并采用无监督学习评估患者的自然聚类是否与指定的临床诊断相对应。
采用留一法交叉验证训练一个监督机器学习分类器,以评估在未见加速度计数据上的性能。还研究了一个独立的 27 名患者队列。接下来,我们重点关注了 48 名同时具有基于智能手机的震颤测量和详细临床评估指标的患者子集,并比较了基于这些数据训练的两个独立机器学习分类器。
该分类器在对具有智能手机数据和详细临床评估指标的 48 名患者进行分类时,在三分类任务中取得了总准确率为 74.4%、F1 得分为 0.74、曲线下面积为 0.904、平均 F1 得分为 0.94、特异性为 97%、敏感性为 84%的结果,可将 PD 与 ET 或 DT 区分开来。该算法将 ET 与非 ET 区分开来的准确率为 88%,但将 DT 与非 DT 区分开来的准确率仅为 29%。在独立队列中发现了较差的性能。分别基于加速度计和临床数据训练的分类器获得了相似的结果。
机器学习分类器对 PD 的分类准确率较高,而对 ET 的分类准确率中等,对 DT 的分类准确率较差。这突显出由于临床和神经病理学特征缺乏特异性,使用人工智能对某些震颤进行分类的困难,这也强化了它们可能代表重叠综合征的观点。