European Molecular Biology Laboratory - Hamburg Outstation, Notkestr. 85, Hamburg, 22607, Germany.
Centre for Structural Systems Biology, Notkestrasse 85, 22607, Hamburg, Germany.
Sci Rep. 2021 May 5;11(1):9572. doi: 10.1038/s41598-021-88985-z.
Differential scanning fluorimetry (DSF) using the inherent fluorescence of proteins (nDSF) is a popular technique to evaluate thermal protein stability in different conditions (e.g. buffer, pH). In many cases, ligand binding increases thermal stability of a protein and often this can be detected as a clear shift in nDSF experiments. Here, we evaluate binding affinity quantification based on thermal shifts. We present four protein systems with different binding affinity ligands, ranging from nM to high μM. Our study suggests that binding affinities determined by isothermal analysis are in better agreement with those from established biophysical techniques (ITC and MST) compared to apparent Ks obtained from melting temperatures. In addition, we describe a method to optionally fit the heat capacity change upon unfolding ([Formula: see text]) during the isothermal analysis. This publication includes the release of a web server for easy and accessible application of isothermal analysis to nDSF data.
差示扫描荧光法(DSF)利用蛋白质的固有荧光(nDSF)是一种评估蛋白质在不同条件下(如缓冲液、pH 值)热稳定性的常用技术。在许多情况下,配体结合会增加蛋白质的热稳定性,通常可以在 nDSF 实验中检测到明显的变化。在这里,我们评估基于热位移的结合亲和力定量。我们研究了四个具有不同结合亲和力配体的蛋白质系统,范围从纳摩尔到高微摩尔。我们的研究表明,与从熔融温度获得的表观 Ks 相比,通过等温分析确定的结合亲和力与从已建立的生物物理技术(ITC 和 MST)获得的结合亲和力更一致。此外,我们描述了一种可选的方法,即在等温分析中拟合解折叠时的热容变化([Formula: see text])。本出版物包括一个网络服务器的发布,该服务器可轻松访问,可将等温分析应用于 nDSF 数据。