Kolanovic Dajana, Pasupuleti Rajeev, Wallner Jakob, Mlynek Georg, Wiltschi Birgit
acib - Austrian Centre of Industrial Biotechnology, Graz 8010, Austria.
Institute of Molecular Biotechnology, Graz University of Technology, Graz 8010, Austria.
Bioconjug Chem. 2024 Dec 18;35(12):1944-1958. doi: 10.1021/acs.bioconjchem.4c00467. Epub 2024 Dec 3.
The analysis of protein-bound glycans has gained significant attention due to their pivotal roles in physiological and pathological processes like cell-cell recognition, immune response, and disease progression. Routine methods for glycan analysis are challenged by the very similar physicochemical properties of their carbohydrate components. As an alternative, lectins, which are proteins that specifically bind to glycans, have been integrated into biosensors for glycan detection. However, the effectiveness of protein-based biosensors depends heavily on the immobilization of proteins on the sensor surface. To enhance the sensitivity and/or selectivity of lectin biosensors, it is crucial to immobilize the lectin in an optimal orientation for ligand binding without compromising its function. Random immobilization methods often result in arbitrary orientation and reduced sensitivity. To address this, we explored a directed immobilization strategy relying on a reactive noncanonical amino acid (ncAA) and bioorthogonal chemistry. In this study, we site-specifically incorporated the reactive noncanonical lysine derivative, N-((2-azidoethoxy)carbonyl)-l-lysine, into a cysteine-less single-chain variant of human galectin-1 (scCSGal-1). The reactive bioorthogonal azide group allowed the directed immobilization of the lectin on a biosensor surface using strain-promoted azide-alkyne cycloaddition. Biolayer interferometry data demonstrated that the controlled, directed attachment of scCSGal-1 to the biosensor surface enhanced the binding sensitivity to glycosylated von Willebrand factor by about 12-fold compared to random immobilization. These findings emphasize the importance of controlled protein orientation in biosensor design. They also highlight the power of single site-specific genetic encoding of reactive ncAAs and bioorthogonal chemistry to improve the performance of lectin-based diagnostic tools.
蛋白质结合聚糖的分析因其在细胞间识别、免疫反应和疾病进展等生理和病理过程中的关键作用而备受关注。聚糖分析的常规方法受到其碳水化合物成分非常相似的物理化学性质的挑战。作为一种替代方法,凝集素(即特异性结合聚糖的蛋白质)已被整合到用于聚糖检测的生物传感器中。然而,基于蛋白质的生物传感器的有效性在很大程度上取决于蛋白质在传感器表面的固定。为了提高凝集素生物传感器的灵敏度和/或选择性,以最佳配体结合方向固定凝集素而不损害其功能至关重要。随机固定方法往往导致任意方向并降低灵敏度。为了解决这个问题,我们探索了一种基于反应性非天然氨基酸(ncAA)和生物正交化学的定向固定策略。在本研究中,我们将反应性非天然赖氨酸衍生物N-((2-叠氮基乙氧基)羰基)-L-赖氨酸位点特异性地掺入人半乳糖凝集素-1(scCSGal-1)的无半胱氨酸单链变体中。反应性生物正交叠氮基团允许使用应变促进的叠氮-炔环加成将凝集素定向固定在生物传感器表面。生物层干涉测量数据表明,与随机固定相比,scCSGal-1以可控、定向的方式附着在生物传感器表面,使其对糖基化血管性血友病因子的结合灵敏度提高了约12倍。这些发现强调了在生物传感器设计中控制蛋白质方向的重要性。它们还突出了反应性ncAAs的单一位点特异性遗传编码和生物正交化学在提高基于凝集素的诊断工具性能方面的作用。