Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
Experimental Cardiology Unit, Department of Cardiovascular Medicine, University of Lausanne Medical School, Lausanne, Switzerland.
Nature. 2021 May;593(7859):435-439. doi: 10.1038/s41586-021-03510-6. Epub 2021 May 5.
Mitochondrial fission is a highly regulated process that, when disrupted, can alter metabolism, proliferation and apoptosis. Dysregulation has been linked to neurodegeneration, cardiovascular disease and cancer. Key components of the fission machinery include the endoplasmic reticulum and actin, which initiate constriction before dynamin-related protein 1 (DRP1) binds to the outer mitochondrial membrane via adaptor proteins, to drive scission. In the mitochondrial life cycle, fission enables both biogenesis of new mitochondria and clearance of dysfunctional mitochondria through mitophagy. Current models of fission regulation cannot explain how those dual fates are decided. However, uncovering fate determinants is challenging, as fission is unpredictable, and mitochondrial morphology is heterogeneous, with ultrastructural features that are below the diffraction limit. Here, we used live-cell structured illumination microscopy to capture mitochondrial dynamics. By analysing hundreds of fissions in African green monkey Cos-7 cells and mouse cardiomyocytes, we discovered two functionally and mechanistically distinct types of fission. Division at the periphery enables damaged material to be shed into smaller mitochondria destined for mitophagy, whereas division at the midzone leads to the proliferation of mitochondria. Both types are mediated by DRP1, but endoplasmic reticulum- and actin-mediated pre-constriction and the adaptor MFF govern only midzone fission. Peripheral fission is preceded by lysosomal contact and is regulated by the mitochondrial outer membrane protein FIS1. These distinct molecular mechanisms explain how cells independently regulate fission, leading to distinct mitochondrial fates.
线粒体分裂是一个高度调控的过程,当其发生紊乱时,会改变代谢、增殖和凋亡。失调与神经退行性疾病、心血管疾病和癌症有关。分裂机制的关键组成部分包括内质网和肌动蛋白,它们在与衔接蛋白结合之前引发收缩,然后动力相关蛋白 1(DRP1)通过衔接蛋白结合到线粒体的外膜上,从而驱动分裂。在线粒体的生命周期中,分裂既能促进新线粒体的生物发生,又能通过线粒体自噬清除功能失调的线粒体。目前的分裂调节模型无法解释这两种命运是如何决定的。然而,揭示命运决定因素具有挑战性,因为分裂是不可预测的,线粒体形态是异质的,具有低于衍射极限的超微结构特征。在这里,我们使用活细胞结构照明显微镜来捕捉线粒体动力学。通过分析非洲绿猴 Cos-7 细胞和小鼠心肌细胞中的数百次分裂,我们发现了两种功能上和机制上不同的分裂类型。在边缘的分裂使受损物质脱落成较小的线粒体,这些线粒体注定要进行线粒体自噬,而在中部的分裂导致线粒体的增殖。这两种类型都由 DRP1 介导,但内质网和肌动蛋白介导的预收缩和衔接蛋白 MFF 只控制中部的分裂。边缘分裂之前是溶酶体的接触,由线粒体外膜蛋白 FIS1 调节。这些不同的分子机制解释了细胞如何独立地调节分裂,从而导致不同的线粒体命运。
Proc Natl Acad Sci U S A. 2013-3-25
J Cell Sci. 2014-11-1
Microb Cell. 2025-8-27
Transl Neurodegener. 2025-9-1
Biomolecules. 2025-8-8
Fluids Barriers CNS. 2025-8-25
J Clin Hypertens (Greenwich). 2025-8
MedComm (2020). 2025-8-15
Cell Mol Neurobiol. 2025-8-14
Nat Cell Biol. 2020-9-28
Nat Methods. 2020-6-22
Curr Biol. 2018-2-19
Cell Metab. 2017-10-26