Suppr超能文献

NAT10通过介导Gremlin 1的N4-乙酰胞苷修饰促进间充质干细胞的成骨分化。

NAT10 Promotes Osteogenic Differentiation of Mesenchymal Stem Cells by Mediating N4-Acetylcytidine Modification of Gremlin 1.

作者信息

Zhu Zhenbiao, Xing Xiaowei, Huang Shisi, Tu Yuanyuan

机构信息

Department of Orthopaedics, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, Hainan, China.

Department of Oncology, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, Hainan, China.

出版信息

Stem Cells Int. 2021 Apr 12;2021:8833527. doi: 10.1155/2021/8833527. eCollection 2021.

Abstract

OBJECTIVE

To investigate the function of NAT10 in mesenchymal stem cell (MSC) osteogenic differentiation and study the mechanism by which NAT10 affects MSC osteogenesis by mediating Gremlin 1 N4-acetylcytidine (acC) modification.

METHODS

Osteogenic differentiation of MSCs was induced, and the osteogenic ability was evaluated with alizarin red S (ARS) and alkaline phosphatase (ALP) assays. The NAT10 expression level during MSC osteogenesis was measured by western blot (WB). MSCs were transfected with lentiviruses to inhibit (Sh-NAT10) or overexpress NAT10 (Over-NAT10), and the osteogenic differentiation ability was assessed by ARS, ALP, and osteogenic gene marker assays. -Catenin, Akt, and Smad signaling pathway component activation levels were assessed, and the expression levels of key Smad signaling pathway molecules were determined by PCR and WB. The Gremlin 1 mRNA acC levels were analyzed using RIP-PCR, and the Gremlin 1 mRNA degradation rate was determined. Sh-Gremlin 1 was transfected to further investigate the role of NAT10 and Gremlin 1 in MSC osteogenesis.

RESULTS

During MSC osteogenesis, NAT10 expression, ARS staining, and the ALP level gradually increased. Decreasing NAT10 expression inhibited, and increasing NAT10 expression promoted MSC osteogenic differentiation. NAT10 affected the BMP/Smad rather than the Akt and -Catenin signaling pathway activation by regulating Gremlin 1 expression. The Gremlin 1 mRNA acC level was positively regulated by NAT10, which accelerated Gremlin 1 degradation. Sh-Gremlin 1 abolished the promotive effect of NAT10 on MSC osteogenic differentiation.

CONCLUSION

NAT10 positively regulated MSC osteogenic differentiation through accelerating the Gremlin 1 mRNA degradation by increasing its acC level. These results may provide new mechanistic insight into MSC osteogenesis and bone metabolism .

摘要

目的

研究NAT10在间充质干细胞(MSC)成骨分化中的作用,并探讨NAT10通过介导Gremlin 1 N4-乙酰胞苷(acC)修饰影响MSC成骨的机制。

方法

诱导MSC成骨分化,通过茜素红S(ARS)和碱性磷酸酶(ALP)检测评估成骨能力。采用蛋白质免疫印迹法(WB)检测MSC成骨过程中NAT10的表达水平。用慢病毒转染MSC以抑制(Sh-NAT10)或过表达NAT10(Over-NAT10),通过ARS、ALP和成骨基因标志物检测评估成骨分化能力。评估β-连环蛋白、Akt和Smad信号通路成分的激活水平,通过PCR和WB检测关键Smad信号通路分子的表达水平。采用RNA免疫沉淀PCR(RIP-PCR)分析Gremlin 1 mRNA的acC水平,测定Gremlin 1 mRNA的降解率。转染Sh-Gremlin 1以进一步研究NAT10和Gremlin 1在MSC成骨中的作用。

结果

在MSC成骨过程中,NAT10表达、ARS染色和ALP水平逐渐升高。降低NAT10表达抑制,增加NAT10表达促进MSC成骨分化。NAT10通过调节Gremlin 1表达影响BMP/Smad信号通路激活,而非Akt和β-连环蛋白信号通路。NAT10对Gremlin 1 mRNA的acC水平起正向调节作用,加速Gremlin 1降解。Sh-Gremlin 1消除了NAT10对MSC成骨分化的促进作用。

结论

NAT10通过提高Gremlin 1 mRNA的acC水平加速其降解,从而正向调节MSC成骨分化。这些结果可能为MSC成骨和骨代谢提供新的机制见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c46/8057913/8e35e1bf0add/SCI2021-8833527.001.jpg

相似文献

1
NAT10 Promotes Osteogenic Differentiation of Mesenchymal Stem Cells by Mediating N4-Acetylcytidine Modification of Gremlin 1.
Stem Cells Int. 2021 Apr 12;2021:8833527. doi: 10.1155/2021/8833527. eCollection 2021.
3
Gremlin-1 suppression increases BMP-2-induced osteogenesis of human mesenchymal stem cells.
Mol Med Rep. 2017 Apr;15(4):2186-2194. doi: 10.3892/mmr.2017.6253. Epub 2017 Feb 28.
4
LncRNA HOTAIR inhibited osteogenic differentiation of BMSCs by regulating Wnt/β-catenin pathway.
Eur Rev Med Pharmacol Sci. 2019 Sep;23(17):7232-7246. doi: 10.26355/eurrev_201909_18826.
8
ac4C acetylation of RUNX2 catalyzed by NAT10 spurs osteogenesis of BMSCs and prevents ovariectomy-induced bone loss.
Mol Ther Nucleic Acids. 2021 Jul 2;26:135-147. doi: 10.1016/j.omtn.2021.06.022. eCollection 2021 Dec 3.
9
microRNA-21 promotes osteogenic differentiation of mesenchymal stem cells by the PI3K/β-catenin pathway.
J Orthop Res. 2015 Jul;33(7):957-64. doi: 10.1002/jor.22884. Epub 2015 May 21.
10
YBX1 Promotes MSC Osteogenic Differentiation by Activating the PI3K/AKT Pathway.
Curr Stem Cell Res Ther. 2023;18(4):513-521. doi: 10.2174/1574888X17666220805143833.

引用本文的文献

1
Research progress on NAT10-mediated acetylation in normal development and disease.
Front Cell Dev Biol. 2025 Aug 13;13:1623276. doi: 10.3389/fcell.2025.1623276. eCollection 2025.
3
Nat10-mediated N4-acetylcytidine modification enhances Nfatc1 translation to exacerbate osteoclastogenesis in postmenopausal osteoporosis.
Proc Natl Acad Sci U S A. 2025 Apr 15;122(15):e2423991122. doi: 10.1073/pnas.2423991122. Epub 2025 Apr 7.
4
Biological function and mechanism of NAT10 in cancer.
Cancer Innov. 2025 Jan 14;4(1):e154. doi: 10.1002/cai2.154. eCollection 2025 Feb.
5
Advances of NAT10 in diseases: insights from dual properties as protein and RNA acetyltransferase.
Cell Biol Toxicol. 2024 Dec 27;41(1):17. doi: 10.1007/s10565-024-09962-6.
7
The role and mechanism of NAT10-mediated ac4C modification in tumor development and progression.
MedComm (2020). 2024 Dec 4;5(12):e70026. doi: 10.1002/mco2.70026. eCollection 2024 Dec.
8
Emerging Role of NAT10 as ac4C Writer in Inflammatory Diseases: Mechanisms and Therapeutic Applications.
Curr Drug Targets. 2025;26(4):282-294. doi: 10.2174/0113894501346709241202110834.

本文引用的文献

1
Osteochondral repair combining therapeutics implant with mesenchymal stem cells spheroids.
Nanomedicine. 2020 Oct;29:102253. doi: 10.1016/j.nano.2020.102253. Epub 2020 Jul 1.
2
Current and future uses of skeletal stem cells for bone regeneration.
World J Stem Cells. 2020 May 26;12(5):339-350. doi: 10.4252/wjsc.v12.i5.339.
3
Acetylation of Cytidine Residues Boosts HIV-1 Gene Expression by Increasing Viral RNA Stability.
Cell Host Microbe. 2020 Aug 12;28(2):306-312.e6. doi: 10.1016/j.chom.2020.05.011. Epub 2020 Jun 12.
4
Characterization and therapeutic applications of mesenchymal stem cells for regenerative medicine.
Tissue Cell. 2020 Jun;64:101330. doi: 10.1016/j.tice.2020.101330. Epub 2020 Jan 10.
5
Gremlin 1 - small protein, big impact: the multiorgan consequences of disrupted BMP antagonism.
J Pathol. 2020 Aug;251(4):349-352. doi: 10.1002/path.5479. Epub 2020 Jun 20.
6
The Processing, Gene Regulation, Biological Functions, and Clinical Relevance of N4-Acetylcytidine on RNA: A Systematic Review.
Mol Ther Nucleic Acids. 2020 Jun 5;20:13-24. doi: 10.1016/j.omtn.2020.01.037. Epub 2020 Feb 8.
8
Epigenetic Regulation of Mesenchymal Stem Cell Homeostasis.
Trends Cell Biol. 2020 Feb;30(2):97-116. doi: 10.1016/j.tcb.2019.11.006. Epub 2019 Dec 20.
9
Mesenchymal stem cell perspective: cell biology to clinical progress.
NPJ Regen Med. 2019 Dec 2;4:22. doi: 10.1038/s41536-019-0083-6. eCollection 2019.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验