Suppr超能文献

骶骨加速度可以预测不同跑步速度下的全身动力学和步幅运动学。

Sacral acceleration can predict whole-body kinetics and stride kinematics across running speeds.

作者信息

Alcantara Ryan S, Day Evan M, Hahn Michael E, Grabowski Alena M

机构信息

Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States of America.

Department of Human Physiology, University of Oregon, Eugene, OR, United States of America.

出版信息

PeerJ. 2021 Apr 12;9:e11199. doi: 10.7717/peerj.11199. eCollection 2021.

Abstract

BACKGROUND

Stress fractures are injuries caused by repetitive loading during activities such as running. The application of advanced analytical methods such as machine learning to data from multiple wearable sensors has allowed for predictions of biomechanical variables associated with running-related injuries like stress fractures. However, it is unclear if data from a single wearable sensor can accurately estimate variables that characterize external loading during running such as peak vertical ground reaction force (vGRF), vertical impulse, and ground contact time. Predicting these biomechanical variables with a single wearable sensor could allow researchers, clinicians, and coaches to longitudinally monitor biomechanical running-related injury risk factors without expensive force-measuring equipment.

PURPOSE

We quantified the accuracy of applying quantile regression forest (QRF) and linear regression (LR) models to sacral-mounted accelerometer data to predict peak vGRF, vertical impulse, and ground contact time across a range of running speeds.

METHODS

Thirty-seven collegiate cross country runners (24 females, 13 males) ran on a force-measuring treadmill at 3.8-5.4 m/s while wearing an accelerometer clipped posteriorly to the waistband of their running shorts. We cross-validated QRF and LR models by training them on acceleration data, running speed, step frequency, and body mass as predictor variables. Trained models were then used to predict peak vGRF, vertical impulse, and contact time. We compared predicted values to those calculated from a force-measuring treadmill on a subset of data ( = 9) withheld during model training. We quantified prediction accuracy by calculating the root mean square error (RMSE) and mean absolute percentage error (MAPE).

RESULTS

The QRF model predicted peak vGRF with a RMSE of 0.150 body weights (BW) and MAPE of 4.27  ±  2.85%, predicted vertical impulse with a RMSE of 0.004 BWs and MAPE of 0.80  ±  0.91%, and predicted contact time with a RMSE of 0.011 s and MAPE of 4.68  ±  3.00%. The LR model predicted peak vGRF with a RMSE of 0.139 BW and MAPE of 4.04  ±  2.57%, predicted vertical impulse with a RMSE of 0.002 BWs and MAPE of 0.50  ±  0.42%, and predicted contact time with a RMSE of 0.008 s and MAPE of 3.50  ±  2.27%. There were no statistically significant differences between QRF and LR model prediction MAPE for peak vGRF ( = 0.549) or vertical impulse ( = 0.073), but the LR model's MAPE for contact time was significantly lower than the QRF model's MAPE ( = 0.0497).

CONCLUSIONS

Our findings indicate that the QRF and LR models can accurately predict peak vGRF, vertical impulse, and contact time (MAPE < 5%) from a single sacral-mounted accelerometer across a range of running speeds. These findings may be beneficial for researchers, clinicians, or coaches seeking to monitor running-related injury risk factors without force-measuring equipment.

摘要

背景

应力性骨折是由跑步等活动中的重复性负荷导致的损伤。将机器学习等先进分析方法应用于来自多个可穿戴传感器的数据,能够预测与应力性骨折等跑步相关损伤相关的生物力学变量。然而,尚不清楚来自单个可穿戴传感器的数据能否准确估计跑步过程中表征外部负荷的变量,如垂直地面反作用力峰值(vGRF)、垂直冲量和地面接触时间。使用单个可穿戴传感器预测这些生物力学变量,可使研究人员、临床医生和教练在无需昂贵测力设备的情况下纵向监测与跑步相关的生物力学损伤风险因素。

目的

我们量化了应用分位数回归森林(QRF)和线性回归(LR)模型于骶部安装的加速度计数据,以预测一系列跑步速度下的vGRF峰值、垂直冲量和地面接触时间的准确性。

方法

37名大学越野跑运动员(24名女性,13名男性)在测力跑步机上以3.8 - 5.4米/秒的速度跑步,同时在其跑步短裤腰带后方 clipped 佩戴一个加速度计。我们通过将加速度数据、跑步速度、步频和体重作为预测变量对QRF和LR模型进行训练,从而进行交叉验证。然后使用训练好的模型预测vGRF峰值、垂直冲量和接触时间。我们将预测值与在模型训练期间 withheld 的一部分数据( = 9)中通过测力跑步机计算得出的值进行比较。我们通过计算均方根误差(RMSE)和平均绝对百分比误差(MAPE)来量化预测准确性。

结果

QRF模型预测vGRF峰值时RMSE为0.150体重(BW),MAPE为4.27 ± 2.85%;预测垂直冲量时RMSE为0.004 BWs,MAPE为0.80 ± 0.91%;预测接触时间时RMSE为0.011秒,MAPE为4.68 ± 3.00%。LR模型预测vGRF峰值时RMSE为0.139 BW,MAPE为4.04 ± 2.57%;预测垂直冲量时RMSE为0.002 BWs,MAPE为0.50 ± 0.42%;预测接触时间时RMSE为0.008秒,MAPE为3.50 ± 2.27%。QRF和LR模型预测vGRF峰值( = 0.549)或垂直冲量( = 0.073)的MAPE之间无统计学显著差异,但LR模型预测接触时间的MAPE显著低于QRF模型的MAPE( = 0.0497)。

结论

我们的研究结果表明,QRF和LR模型能够通过单个骶部安装的加速度计在一系列跑步速度下准确预测vGRF峰值、垂直冲量和接触时间(MAPE < 5%)。这些发现可能对寻求在无需测力设备的情况下监测与跑步相关损伤风险因素的研究人员、临床医生或教练有益。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7536/8048400/8e543b418a1d/peerj-09-11199-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验