Hanai Shunpei, Katayama Kota, Imai Hiroo, Kandori Hideki
Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Aichi 466-8555, Japan.
OptoBioTechnology Research Center, Nagoya Institute of Technology, Nagoya, Aichi 466-8555, Japan.
Biophys Physicobiol. 2021 Feb 13;18:40-49. doi: 10.2142/biophysico.bppb-v18.005. eCollection 2021.
Structural studies of color visual pigments lag far behind those of rhodopsin for scotopic vision. Using difference FTIR spectroscopy at 77 K, we report the first structural data of three primate color visual pig-ments, monkey red (MR), green (MG), and blue (MB), where the batho-intermediate (Batho) exhibits photo-equilibrium with the unphotolyzed state. This photo-chromic property is highly advantageous for limited samples since the signal-to-noise ratio is improved, but may not be applicable to late intermediates, because of large structural changes to proteins. Here we report the photochromic property of MB at 163 K, where the BL intermediate, formed by the relaxation of Batho, is in photoequilibrium with the initial MB state. A comparison of the difference FTIR spectra at 77 and 163 K provided information on what happens in the process of transition from Batho to BL in MB. The coupled C=C HOOP vibration in the planer structure in MB is decoupled by distortion in Batho after retinal photoisomerization, but returns to the coupled C=C HOOP vibration in the all- chromophore in BL. The Batho formation accompanies helical structural perturbation, which is relaxed in BL. Protein-bound water molecules that form an extended water cluster near the retinal chromophore change hydrogen bonds differently for Batho and BL, being stronger in the latter than in the initial state. In addition to structural dynamics, the present FTIR spectra show no signals of protonated carboxylic acids at 77 and 163 K, suggesting that E181 is deprotonated in MB, Batho and BL.
颜色视觉色素的结构研究远远落后于暗视觉视紫红质的结构研究。利用77K下的差示傅里叶变换红外光谱,我们报告了三种灵长类颜色视觉色素的首个结构数据,即猴红色(MR)、绿色(MG)和蓝色(MB)色素,其中嗜碱中间体(Batho)与未光解状态呈现光平衡。这种光致变色特性对于有限的样品非常有利,因为信噪比得到了提高,但由于蛋白质结构变化较大,可能不适用于后期中间体。在这里,我们报告了MB在163K时的光致变色特性,其中由Batho弛豫形成的BL中间体与初始MB状态处于光平衡。对77K和163K下的差示傅里叶变换红外光谱进行比较,提供了关于MB中从Batho到BL转变过程中发生了什么的信息。MB平面结构中的耦合C=C HOOP振动在视网膜光异构化后因Batho中的扭曲而解耦,但在BL的全发色团中恢复为耦合C=C HOOP振动。Batho的形成伴随着螺旋结构的扰动,这种扰动在BL中得到缓解。在视网膜发色团附近形成延伸水簇的蛋白质结合水分子,其氢键在Batho和BL中的变化不同,在后者中比初始状态更强。除了结构动力学外,目前的傅里叶变换红外光谱在77K和163K时未显示质子化羧酸的信号,这表明在MB、Batho和BL中E181去质子化。