Suppr超能文献

使用机器学习方法的用于准确性和入侵检测的分类模型。

Classification model for accuracy and intrusion detection using machine learning approach.

作者信息

Agarwal Arushi, Sharma Purushottam, Alshehri Mohammed, Mohamed Ahmed A, Alfarraj Osama

机构信息

Amity School of Engineering and Technology, Amity University, Uttar Pradesh, India.

Department of Information Technology, College of Computer and Information Sciences, Majmaah University, Majmaah, Riyadh, Saudi Arabia.

出版信息

PeerJ Comput Sci. 2021 Apr 7;7:e437. doi: 10.7717/peerj-cs.437. eCollection 2021.

Abstract

In today's cyber world, the demand for the internet is increasing day by day, increasing the concern of network security. The aim of an Intrusion Detection System (IDS) is to provide approaches against many fast-growing network attacks (e.g., DDoS attack, Ransomware attack, Botnet attack, etc.), as it blocks the harmful activities occurring in the network system. In this work, three different classification machine learning algorithms-Naïve Bayes (NB), Support Vector Machine (SVM), and K-nearest neighbor (KNN)-were used to detect the accuracy and reducing the processing time of an algorithm on the UNSW-NB15 dataset and to find the best-suited algorithm which can efficiently learn the pattern of the suspicious network activities. The data gathered from the feature set comparison was then applied as input to IDS as data feeds to train the system for future intrusion behavior prediction and analysis using the best-fit algorithm chosen from the above three algorithms based on the performance metrics found. Also, the classification reports (Precision, Recall, and F1-score) and confusion matrix were generated and compared to finalize the support-validation status found throughout the testing phase of the model used in this approach.

摘要

在当今的网络世界中,对互联网的需求日益增长,这也增加了对网络安全的关注。入侵检测系统(IDS)的目的是提供针对许多快速增长的网络攻击(例如,分布式拒绝服务攻击、勒索软件攻击、僵尸网络攻击等)的方法,因为它能阻止网络系统中发生的有害活动。在这项工作中,使用了三种不同的分类机器学习算法——朴素贝叶斯(NB)、支持向量机(SVM)和K近邻(KNN)——来检测在UNSW-NB15数据集上算法的准确性并减少其处理时间,以找到最适合的算法,该算法能够有效地学习可疑网络活动的模式。然后,将从特征集比较中收集的数据作为数据输入提供给IDS,以使用基于所发现的性能指标从上述三种算法中选择的最佳拟合算法来训练系统,用于未来的入侵行为预测和分析。此外,生成并比较了分类报告(精确率、召回率和F1分数)以及混淆矩阵,以确定在该方法中使用的模型的整个测试阶段所发现的支持验证状态。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dafc/8049129/2a2f1be43e68/peerj-cs-07-437-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验