Suppr超能文献

基于机器学习的物联网网络攻击分类的实验分析。

An Experimental Analysis of Attack Classification Using Machine Learning in IoT Networks.

机构信息

School of Computing, Edinburgh Napier University, Edinburgh EH10 5DT, UK.

School of Electronics, Electrical Engineering and Computer Science, Queen's University, Belfast BT9 5BN, UK.

出版信息

Sensors (Basel). 2021 Jan 10;21(2):446. doi: 10.3390/s21020446.

Abstract

In recent years, there has been a massive increase in the amount of Internet of Things (IoT) devices as well as the data generated by such devices. The participating devices in IoT networks can be problematic due to their resource-constrained nature, and integrating security on these devices is often overlooked. This has resulted in attackers having an increased incentive to target IoT devices. As the number of attacks possible on a network increases, it becomes more difficult for traditional intrusion detection systems (IDS) to cope with these attacks efficiently. In this paper, we highlight several machine learning (ML) methods such as k-nearest neighbour (KNN), support vector machine (SVM), decision tree (DT), naive Bayes (NB), random forest (RF), artificial neural network (ANN), and logistic regression (LR) that can be used in IDS. In this work, ML algorithms are compared for both binary and multi-class classification on Bot-IoT dataset. Based on several parameters such as accuracy, precision, recall, F1 score, and log loss, we experimentally compared the aforementioned ML algorithms. In the case of HTTP distributed denial-of-service (DDoS) attack, the accuracy of RF is 99%. Furthermore, other simulation results-based precision, recall, F1 score, and log loss metric reveal that RF outperforms on all types of attacks in binary classification. However, in multi-class classification, KNN outperforms other ML algorithms with an accuracy of 99%, which is 4% higher than RF.

摘要

近年来,物联网(IoT)设备以及这些设备生成的数据数量都有了大规模的增长。由于物联网网络中的参与设备受到其资源限制的影响,因此这些设备存在问题,而在这些设备上集成安全性通常会被忽视。这导致攻击者有更多的动机来攻击物联网设备。随着网络上可能发生的攻击数量的增加,传统的入侵检测系统(IDS)更难以有效地应对这些攻击。在本文中,我们重点介绍了几种机器学习(ML)方法,例如 k-最近邻(KNN)、支持向量机(SVM)、决策树(DT)、朴素贝叶斯(NB)、随机森林(RF)、人工神经网络(ANN)和逻辑回归(LR),这些方法可用于 IDS。在这项工作中,对 Bot-IoT 数据集上的二进制和多类分类分别使用了 ML 算法进行比较。基于准确性、精度、召回率、F1 得分和对数损失等几个参数,我们对上述 ML 算法进行了实验比较。在 HTTP 分布式拒绝服务(DDoS)攻击的情况下,RF 的准确率为 99%。此外,基于其他模拟结果的精度、召回率、F1 得分和对数损失指标表明,RF 在二进制分类中优于所有类型的攻击。然而,在多类分类中,KNN 的准确率为 99%,优于其他 ML 算法,比 RF 高出 4%。

相似文献

引用本文的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验