Suppr超能文献

物联网医疗网络中入侵检测的机器学习方法研究与比较

An investigation and comparison of machine learning approaches for intrusion detection in IoMT network.

作者信息

Binbusayyis Adel, Alaskar Haya, Vaiyapuri Thavavel, Dinesh M

机构信息

College of Computer Engineering and Sciences, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia.

College of Computing and Informatics, Saudi Electronic University, Riyadh, Saudi Arabia.

出版信息

J Supercomput. 2022;78(15):17403-17422. doi: 10.1007/s11227-022-04568-3. Epub 2022 May 18.

Abstract

Internet of Medical Things (IoMT) is network of interconnected medical devices (smart watches, pace makers, prosthetics, glucometer, etc.), software applications, and health systems and services. IoMT has successfully addressed many old healthcare problems. But it comes with its drawbacks essentially with patient's information privacy and security related issues that comes from IoMT architecture. Using obsolete systems can bring security vulnerabilities and draw attacker's attention emphasizing the need for effective solution to secure and protect the data traffic in IoMT network. Recently, intrusion detection system (IDS) is regarded as an essential security solution for protecting IoMT network. In the past decades, machines learning (ML) algorithms have demonstrated breakthrough results in the field of intrusion detection. Notwithstanding, to our knowledge, there is no work that investigates the power of machines learning algorithms for intrusion detection in IoMT network. This paper aims to fill this gap of knowledge investigating the application of different ML algorithms for intrusion detection in IoMT network. The investigation analysis includes ML algorithms such as -nearest neighbor, Naïve Bayes, support vector machine, artificial neural network and decision tree. The benchmark dataset, Bot-IoT which is publicly available with comprehensive set of attacks was used to train and test the effectiveness of all ML models considered for investigation. Also, we used comprehensive set of evaluation metrics to compare the power of ML algorithms with regard to their detection accuracy for intrusion in IoMT networks. The outcome of the analysis provides a promising path to identify the best the machine learning approach can be used for building effective IDS that can safeguard IoMT network against malicious activities.

摘要

医疗物联网(IoMT)是由相互连接的医疗设备(智能手表、起搏器、假肢、血糖仪等)、软件应用程序以及健康系统和服务组成的网络。IoMT成功解决了许多传统的医疗保健问题。但它也有缺点,主要是与IoMT架构相关的患者信息隐私和安全问题。使用过时的系统会带来安全漏洞,并吸引攻击者的注意,这凸显了需要有效的解决方案来保障和保护IoMT网络中的数据流量。最近,入侵检测系统(IDS)被视为保护IoMT网络的重要安全解决方案。在过去几十年中,机器学习(ML)算法在入侵检测领域取得了突破性成果。尽管如此,据我们所知,尚无研究探讨机器学习算法在IoMT网络入侵检测方面的能力。本文旨在填补这一知识空白,研究不同ML算法在IoMT网络入侵检测中的应用。调查分析包括K近邻、朴素贝叶斯、支持向量机、人工神经网络和决策树等ML算法。使用公开可用的包含全面攻击集的基准数据集Bot-IoT来训练和测试所考虑的所有ML模型的有效性。此外,我们使用了一套全面的评估指标来比较ML算法在IoMT网络中入侵检测准确性方面的能力。分析结果为确定可用于构建有效IDS以保护IoMT网络免受恶意活动影响的最佳机器学习方法提供了一条有前景的途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ddde/9114823/fa92b0aa5a84/11227_2022_4568_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验