Suppr超能文献

用于雾支持的异构无线传感器网络的基于确定性聚类的压缩感知方案。

Deterministic clustering based compressive sensing scheme for fog-supported heterogeneous wireless sensor networks.

作者信息

Osamy Walid, Aziz Ahmed, M Khedr Ahmed

机构信息

Computer Science Department, Faculty of Computers and Artificial intelligence, Benha University, Benha, Egypt.

Department of Applied Natural Science, College of Community, Qassim University, Unaizah, Qassim, Saudi Arabia.

出版信息

PeerJ Comput Sci. 2021 Apr 7;7:e463. doi: 10.7717/peerj-cs.463. eCollection 2021.

Abstract

Data acquisition problem in large-scale distributed Wireless Sensor Networks (WSNs) is one of the main issues that hinder the evolution of Internet of Things (IoT) technology. Recently, combination of Compressive Sensing (CS) and routing protocols has attracted much attention. An open question in this approach is how to integrate these techniques effectively for specific tasks. In this paper, we introduce an effective deterministic clustering based CS scheme (DCCS) for fog-supported heterogeneous WSNs to handle the data acquisition problem. DCCS employs the concept of fog computing, reduces total overhead and computational cost needed to self-organize sensor network by using a simple approach, and then uses CS at each sensor node to minimize the overall energy expenditure and prolong the IoT network lifetime. Additionally, the proposed scheme includes an effective algorithm for CS reconstruction called Random Selection Matching Pursuit (RSMP) to enhance the recovery process at the base station (BS) side with a complete scenario using CS. RSMP adds random selection process during the forward step to give opportunity for more columns to be selected as an estimated solution in each iteration. The results of simulation prove that the proposed technique succeeds to minimize the overall network power expenditure, prolong the network lifetime and provide better performance in CS data reconstruction.

摘要

大规模分布式无线传感器网络(WSN)中的数据采集问题是阻碍物联网(IoT)技术发展的主要问题之一。近来,压缩感知(CS)与路由协议的结合备受关注。这种方法中的一个开放性问题是如何针对特定任务有效整合这些技术。在本文中,我们针对雾支持的异构WSN引入一种有效的基于确定性聚类的CS方案(DCCS)来处理数据采集问题。DCCS采用雾计算概念,通过一种简单方法降低自组织传感器网络所需的总开销和计算成本,然后在每个传感器节点使用CS以最小化总体能量消耗并延长物联网网络寿命。此外,所提方案包括一种用于CS重建的有效算法,称为随机选择匹配追踪(RSMP),以便在使用CS的完整场景下增强基站(BS)端的恢复过程。RSMP在向前步骤中添加随机选择过程,以便在每次迭代中有更多列有机会被选作估计解。仿真结果证明,所提技术成功地最小化了总体网络功率消耗,延长了网络寿命,并在CS数据重建方面提供了更好的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b797/8049130/f49aa9755995/peerj-cs-07-463-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验