Department of Pharmaceutical Services, Emory University Hospital, Atlanta, GA, USA.
Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA, USA.
Am J Health Syst Pharm. 2021 Sep 7;78(18):1681-1690. doi: 10.1093/ajhp/zxab201.
We evaluated a previously published risk model (Novant model) to identify patients at risk for healthcare facility-onset Clostridioides difficile infection (HCFO-CDI) at 2 hospitals within a large health system and compared its predictive value to that of a new model developed based on local findings.
We conducted a retrospective case-control study including adult patients admitted from July 1, 2016, to July 1, 2018. Patients with HCFO-CDI who received systemic antibiotics were included as cases and were matched 1 to 1 with controls (who received systemic antibiotics without developing HCFO-CDI). We extracted chart data on patient risk factors for CDI, including those identified in prior studies and those included in the Novant model. We applied the Novant model to our patient population to assess the model's utility and generated a local model using logistic regression-based prediction scores. A receiver operating characteristic area under the curve (ROC-AUC) score was determined for each model.
We included 362 patients, with 161 controls and 161 cases. The Novant model had a ROC-AUC of 0.62 in our population. Our local model using risk factors identifiable at hospital admission included hospitalization within 90 days of admission (adjusted odds ratio [OR], 3.52; 95% confidence interval [CI], 2.06-6.04), hematologic malignancy (adjusted OR, 12.87; 95% CI, 3.70-44.80), and solid tumor malignancy (adjusted OR, 4.76; 95% CI, 1.27-17.80) as HCFO-CDI predictors and had a ROC-AUC score of 0.74.
The Novant model evaluating risk factors identifiable at admission poorly predicted HCFO-CDI in our population, while our local model was a fair predictor. These findings highlight the need for institutions to review local risk factors to adjust modeling for their patient population.
我们评估了先前发表的风险模型(Novant 模型),以识别大型医疗系统内 2 家医院发生医疗机构获得性艰难梭菌感染(HCFO-CDI)的高危患者,并比较其预测值与基于本地发现开发的新模型的预测值。
我们进行了一项回顾性病例对照研究,纳入 2016 年 7 月 1 日至 2018 年 7 月 1 日期间入院的成年患者。将接受全身抗生素治疗且发生 HCFO-CDI 的患者作为病例,并与接受全身抗生素治疗但未发生 HCFO-CDI 的患者(对照组)按 1:1 匹配。我们从病历中提取了 CDI 患者的危险因素数据,包括既往研究和 Novant 模型中确定的危险因素。我们将 Novant 模型应用于我们的患者人群,以评估模型的实用性,并使用基于逻辑回归的预测评分生成本地模型。每个模型的接受者操作特征曲线下面积(ROC-AUC)得分。
我们纳入了 362 例患者,其中 161 例为对照组,161 例为病例组。Novant 模型在我们的人群中的 ROC-AUC 为 0.62。我们的本地模型使用入院时可识别的危险因素,包括入院后 90 天内住院(调整后的优势比[OR],3.52;95%置信区间[CI],2.06-6.04)、血液恶性肿瘤(调整后 OR,12.87;95%CI,3.70-44.80)和实体瘤恶性肿瘤(调整后 OR,4.76;95%CI,1.27-17.80),预测 HCFO-CDI,ROC-AUC 评分为 0.74。
Novant 模型评估入院时可识别的危险因素,对我们人群中的 HCFO-CDI 预测效果不佳,而我们的本地模型则是一个较好的预测指标。这些发现强调了各机构需要审查本地危险因素,以调整其患者人群的建模。