Suppr超能文献

评估一种风险评估模型,以预测医疗机构获得性艰难梭菌感染。

Evaluation of a risk assessment model to predict infection with healthcare facility-onset Clostridioides difficile.

机构信息

Department of Pharmaceutical Services, Emory University Hospital, Atlanta, GA, USA.

Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA, USA.

出版信息

Am J Health Syst Pharm. 2021 Sep 7;78(18):1681-1690. doi: 10.1093/ajhp/zxab201.

Abstract

PURPOSE

We evaluated a previously published risk model (Novant model) to identify patients at risk for healthcare facility-onset Clostridioides difficile infection (HCFO-CDI) at 2 hospitals within a large health system and compared its predictive value to that of a new model developed based on local findings.

METHODS

We conducted a retrospective case-control study including adult patients admitted from July 1, 2016, to July 1, 2018. Patients with HCFO-CDI who received systemic antibiotics were included as cases and were matched 1 to 1 with controls (who received systemic antibiotics without developing HCFO-CDI). We extracted chart data on patient risk factors for CDI, including those identified in prior studies and those included in the Novant model. We applied the Novant model to our patient population to assess the model's utility and generated a local model using logistic regression-based prediction scores. A receiver operating characteristic area under the curve (ROC-AUC) score was determined for each model.

RESULTS

We included 362 patients, with 161 controls and 161 cases. The Novant model had a ROC-AUC of 0.62 in our population. Our local model using risk factors identifiable at hospital admission included hospitalization within 90 days of admission (adjusted odds ratio [OR], 3.52; 95% confidence interval [CI], 2.06-6.04), hematologic malignancy (adjusted OR, 12.87; 95% CI, 3.70-44.80), and solid tumor malignancy (adjusted OR, 4.76; 95% CI, 1.27-17.80) as HCFO-CDI predictors and had a ROC-AUC score of 0.74.

CONCLUSION

The Novant model evaluating risk factors identifiable at admission poorly predicted HCFO-CDI in our population, while our local model was a fair predictor. These findings highlight the need for institutions to review local risk factors to adjust modeling for their patient population.

摘要

目的

我们评估了先前发表的风险模型(Novant 模型),以识别大型医疗系统内 2 家医院发生医疗机构获得性艰难梭菌感染(HCFO-CDI)的高危患者,并比较其预测值与基于本地发现开发的新模型的预测值。

方法

我们进行了一项回顾性病例对照研究,纳入 2016 年 7 月 1 日至 2018 年 7 月 1 日期间入院的成年患者。将接受全身抗生素治疗且发生 HCFO-CDI 的患者作为病例,并与接受全身抗生素治疗但未发生 HCFO-CDI 的患者(对照组)按 1:1 匹配。我们从病历中提取了 CDI 患者的危险因素数据,包括既往研究和 Novant 模型中确定的危险因素。我们将 Novant 模型应用于我们的患者人群,以评估模型的实用性,并使用基于逻辑回归的预测评分生成本地模型。每个模型的接受者操作特征曲线下面积(ROC-AUC)得分。

结果

我们纳入了 362 例患者,其中 161 例为对照组,161 例为病例组。Novant 模型在我们的人群中的 ROC-AUC 为 0.62。我们的本地模型使用入院时可识别的危险因素,包括入院后 90 天内住院(调整后的优势比[OR],3.52;95%置信区间[CI],2.06-6.04)、血液恶性肿瘤(调整后 OR,12.87;95%CI,3.70-44.80)和实体瘤恶性肿瘤(调整后 OR,4.76;95%CI,1.27-17.80),预测 HCFO-CDI,ROC-AUC 评分为 0.74。

结论

Novant 模型评估入院时可识别的危险因素,对我们人群中的 HCFO-CDI 预测效果不佳,而我们的本地模型则是一个较好的预测指标。这些发现强调了各机构需要审查本地危险因素,以调整其患者人群的建模。

相似文献

1
Evaluation of a risk assessment model to predict infection with healthcare facility-onset Clostridioides difficile.
Am J Health Syst Pharm. 2021 Sep 7;78(18):1681-1690. doi: 10.1093/ajhp/zxab201.
2
Development of a risk prediction model for hospital-onset Clostridium difficile infection in patients receiving systemic antibiotics.
Am J Infect Control. 2019 Mar;47(3):280-284. doi: 10.1016/j.ajic.2018.08.021. Epub 2018 Oct 11.
5
Evidence of within-facility patient-patient infection spread across diverse settings.
Epidemiol Infect. 2022 Dec 11;151:e4. doi: 10.1017/S0950268822001893.
8
Shift to community-onset Clostridium difficile infection in the national Veterans Health Administration, 2003-2014.
Am J Infect Control. 2018 Apr;46(4):431-435. doi: 10.1016/j.ajic.2017.09.020. Epub 2017 Nov 7.
9
Clostridioides (Clostridium) difficile-associated disease: Epidemiology among patients in a general hospital in Saudi Arabia.
Am J Infect Control. 2020 Oct;48(10):1152-1157. doi: 10.1016/j.ajic.2020.01.011. Epub 2020 Feb 29.
10
Using diagnostic stewardship to reduce rates, healthcare expenditures and accurately identify cases of hospital-onset infection.
Infect Control Hosp Epidemiol. 2021 Jan;42(1):51-56. doi: 10.1017/ice.2020.375. Epub 2020 Sep 18.

引用本文的文献

1
A Systematic Literature Review on Risk Factors for and Timing of Clostridioides difficile Infection in the United States.
Infect Dis Ther. 2024 Feb;13(2):273-298. doi: 10.1007/s40121-024-00919-0. Epub 2024 Feb 13.
2
Microbial ecology between and gut microbiota.
Biosci Microbiota Food Health. 2023;42(4):229-235. doi: 10.12938/bmfh.2023-033. Epub 2023 Jun 7.
3
Diagnostic prediction models to identify patients at risk for healthcare-facility-onset : A systematic review of methodology and reporting.
Infect Control Hosp Epidemiol. 2024 Feb;45(2):174-181. doi: 10.1017/ice.2023.185. Epub 2023 Sep 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验