Suppr超能文献

生物膜感染的人类类器官三维共培养平台,用于替代动物模型测试抗菌纳米技术。

Biofilm-Infected Human Clusteroid Three-Dimensional Coculture Platform to Replace Animal Models in Testing Antimicrobial Nanotechnologies.

机构信息

Department of Chemistry, University of Hull, Cottingham Road, HU67RX Hull, U.K.

Department of Biomedical Sciences, University of Hull, Cottingham Road, Hull HU67RX, U.K.

出版信息

ACS Appl Mater Interfaces. 2021 May 19;13(19):22182-22194. doi: 10.1021/acsami.1c02679. Epub 2021 May 6.

Abstract

Microbial biofilms are a major concern in wound care, implant devices, and organ infections. Biofilms allow higher tolerance to antimicrobial drugs, can impair wound healing, and potentially lead to sepsis. There has been a recent focus on developing novel nanocarrier-based delivery vehicles to enhance the biofilm penetration of traditional antibacterial drugs. However, a feasible in vitro human skin model to mimic the biofilm formation and its treatment for clearance have not yet been reported. This study describes the benefits of using an innovative bacterial biofilm-infected keratinocyte clusteroid model for the first time. It paves a new way for testing innovative nanomedicine delivery systems in a rapid and reproducible way on a realistic human cell-based platform, free of any animal testing. Herein, we have developed a novel composite 3D biofilm/human keratinocyte clusteroid coculture platform, which was used to measure biofilm clearance efficiency of nanoparticle (NP)-based therapeutics. We tested this model by treating the biofilm-infected 3D coculture layers by a ciprofloxacin-loaded Carbopol nanogel particles, surface-functionalized by the cationic protease Alcalase. We measured the antibacterial efficiency of the NP treatment on clearing and biofilms on the 3D keratinocyte clusteroid/biofilm coculture model. Our experiments showed that these bacteria can infect the 3D layer of keratinocyte clusteroids and produce a stable biofilm. The biofilms were efficiently cleared by treatment with a formulation of 0.0032 wt % ciprofloxacin-loaded in 0.2 wt % Carbopol NPs surface-functionalized with 0.2 wt % Alcalase. Taken together, these promising results demonstrate that our coculture model can be exploited as a novel platform for testing the biofilm-eliminating efficiency of various NP formulations emulating skin and wound infections and could have wider applicability to replace animal models in similar experiments. This 3D cell culture-based platform could help in developing and testing of more effective antibacterial agents for clinical applications of antiplaque dental treatments, implants, infection control, and wound dressings.

摘要

微生物生物膜是伤口护理、植入设备和器官感染的主要关注点。生物膜可以提高对抗生素药物的耐受性,会阻碍伤口愈合,并可能导致败血症。最近,人们专注于开发新型基于纳米载体的递药系统,以增强传统抗菌药物对生物膜的穿透性。然而,尚未报道可模拟生物膜形成及其清除的可行体外人皮模型。本研究首次描述了使用创新的细菌生物膜感染角质细胞聚集体模型的益处。它为在无任何动物试验的真实基于细胞的人类平台上,以快速和可重复的方式测试创新型纳米医学递药系统开辟了新途径。在这里,我们开发了一种新型复合 3D 生物膜/人角质形成细胞聚集体共培养平台,用于测量基于纳米颗粒 (NP) 的治疗剂的生物膜清除效率。我们通过用载有环丙沙星的 Carbopol 纳米凝胶颗粒处理生物膜感染的 3D 共培养层,并用阳离子蛋白酶 Alcalase 对其进行表面功能化,来测试该模型。我们在 3D 角质形成细胞聚集体/生物膜共培养模型上测量了 NP 处理对 和 生物膜的抗菌效率。我们的实验表明,这些细菌可以感染角质形成细胞聚集体的 3D 层并产生稳定的生物膜。用 0.0032wt%环丙沙星负载于 0.2wt%Carbopol NPs 的制剂处理可有效清除生物膜,该制剂用 0.2wt%Alcalase 进行表面功能化。总之,这些有希望的结果表明,我们的共培养模型可以被开发为一种新型平台,用于测试模拟皮肤和伤口感染的各种 NP 制剂的生物膜消除效率,并可能具有更广泛的适用性,可以替代类似实验中的动物模型。这种基于 3D 细胞培养的平台有助于开发和测试更有效的抗菌剂,用于抗菌斑牙治疗、植入物、感染控制和伤口敷料的临床应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验