O'Hara P B, Gorski K M, Rosen M A
Department of Chemistry, Amherst College, Massachusetts 01002.
Biophys J. 1988 Jun;53(6):1007-13. doi: 10.1016/S0006-3495(88)83180-1.
We have initiated an investigation into the usefulness of fluorescence energy transfer in probing protein dynamics. Our analysis involves measuring the energy transfer efficiency while perturbing the protein conformational equilibrium with heat. As the temperature increases, the amplitudes of vibrations increase, and fluorescence energy transfer should also increase if the donor and acceptor are in a flexible region of the protein. A theoretical analysis developed by Somogyi and co-workers for the temperature dependence of dipole-dipole energy transfer (Somogyi, B., J. Matko, S. Papp, J. Hevessey, G. R. Welch, and S. Damjanovich. 1984. Biochemistry. 23:3403-3411) was tested by the authors in one protein system. Energy transfer from tryptophan to a pyridoxamine derivatized side group in RNase increased 40% over 25 degrees C. Here we report further testing of this model in two additional protein systems: calmodulin, a calcium activated regulatory protein, and transferrin, a blood serum iron shuttle. Our studies show a slight differential sensitivity of the transfer efficiency to heat for the two systems. Normalized energy transfer over 6.5 A in calmodulin from a tyrosine donor to a Tb(III) acceptor increases 40% from 295 to 320 K. Normalized energy transfer over 42 A in transferrin from a Tb(III) donor to an Fe(III) acceptor increases 35% over the same temperature range. Whereas these results demonstrate that thermally induced fluctuations do increase energy transfer as predicted by Somogyi, they also appear rather insensitive to the nature of the protein host environment. In contrast to the Förster processes examined above, energy transfer over very short distances has shown an anomalously high temperature dependence.
我们已着手研究荧光能量转移在探测蛋白质动力学方面的实用性。我们的分析包括在通过加热扰动蛋白质构象平衡的同时测量能量转移效率。随着温度升高,振动幅度增大,如果供体和受体处于蛋白质的柔性区域,荧光能量转移也应增加。Somogyi及其同事针对偶极 - 偶极能量转移的温度依赖性所开展的理论分析(Somogyi, B., J. Matko, S. Papp, J. Hevessey, G. R. Welch, and S. Damjanovich. 1984. Biochemistry. 23:3403 - 3411),作者在一个蛋白质系统中进行了检验。在核糖核酸酶中,从色氨酸到吡哆胺衍生化侧基的能量转移在25摄氏度范围内增加了40%。在此,我们报告在另外两个蛋白质系统中对该模型的进一步检验:钙调蛋白,一种钙激活的调节蛋白,以及转铁蛋白,一种血清铁转运蛋白。我们的研究表明这两个系统的转移效率对热的敏感性略有差异。在钙调蛋白中,从酪氨酸供体到铽(III)受体的6.5埃距离上的归一化能量转移在295至320开尔文范围内增加了40%。在转铁蛋白中,从铽(III)供体到铁(III)受体的42埃距离上的归一化能量转移在相同温度范围内增加了35%。尽管这些结果表明热诱导的波动确实如Somogyi所预测的那样增加了能量转移,但它们似乎对蛋白质宿主环境的性质相当不敏感。与上述的Förster过程相反,极短距离上的能量转移表现出异常高的温度依赖性。