Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States of America.
Department of Internal Medicine, Cardiovascular Medicine, University of Michigan, Ann Arbor, Michigan, United States of America.
PLoS Comput Biol. 2021 May 6;17(5):e1008861. doi: 10.1371/journal.pcbi.1008861. eCollection 2021 May.
The relationship between regional variabilities in airflow (ventilation) and blood flow (perfusion) is a critical determinant of gas exchange efficiency in the lungs. Hypoxic pulmonary vasoconstriction is understood to be the primary active regulator of ventilation-perfusion matching, where upstream arterioles constrict to direct blood flow away from areas that have low oxygen supply. However, it is not understood how the integrated action of hypoxic pulmonary vasoconstriction affects oxygen transport at the system level. In this study we develop, and make functional predictions with a multi-scale multi-physics model of ventilation-perfusion matching governed by the mechanism of hypoxic pulmonary vasoconstriction. Our model consists of (a) morphometrically realistic 2D pulmonary vascular networks to the level of large arterioles and venules; (b) a tileable lumped-parameter model of vascular fluid and wall mechanics that accounts for the influence of alveolar pressure; (c) oxygen transport accounting for oxygen bound to hemoglobin and dissolved in plasma; and (d) a novel empirical model of hypoxic pulmonary vasoconstriction. Our model simulations predict that under the artificial test condition of a uniform ventilation distribution (1) hypoxic pulmonary vasoconstriction matches perfusion to ventilation; (2) hypoxic pulmonary vasoconstriction homogenizes regional alveolar-capillary oxygen flux; and (3) hypoxic pulmonary vasoconstriction increases whole-lobe oxygen uptake by improving ventilation-perfusion matching.
气流(通气)和血流(灌注)的区域变异性之间的关系是肺部气体交换效率的关键决定因素。低氧性肺血管收缩被认为是通气-灌注匹配的主要主动调节机制,其中上游小动脉收缩,将血流从低氧供应的区域引导开。然而,人们并不了解低氧性肺血管收缩的综合作用如何影响系统水平的氧气输送。在这项研究中,我们开发了一种多尺度多物理模型,并对其进行了功能预测,该模型受低氧性肺血管收缩机制的支配,用于通气-灌注匹配。我们的模型由(a)形态学逼真的二维肺血管网络组成,可达大动脉和小静脉水平;(b)一种平铺的、具有血管流体和壁力学的集总参数模型,考虑了肺泡压力的影响;(c)氧传输,考虑了与血红蛋白结合的氧和溶解在血浆中的氧;(d)一种新的低氧性肺血管收缩经验模型。我们的模型模拟预测,在均匀通气分布的人为测试条件下(1)低氧性肺血管收缩使灌注与通气相匹配;(2)低氧性肺血管收缩使区域肺泡毛细血管氧通量均匀化;(3)低氧性肺血管收缩通过改善通气-灌注匹配来增加整个肺叶的氧气摄取量。