Suppr超能文献

具柔性附肢的交错式游泳:中水多毛类动物多毛海蠋鱼的运动学分析

Metachronal Swimming with Flexible Legs: A Kinematics Analysis of the Midwater Polychaete Tomopteris.

作者信息

Daniels Joost, Aoki Nadège, Havassy Josh, Katija Kakani, Osborn Karen J

机构信息

Monterey Bay Aquarium Research Institute, 7700 Sandholdt Road, Moss Landing, CA 95039, USA.

Invertebrate Zoology, Smithsonian National Museum of Natural History, 1000 Constitution Ave NW, Washington, DC 20560, USA.

出版信息

Integr Comp Biol. 2021 Nov 17;61(5):1658-1673. doi: 10.1093/icb/icab059.

Abstract

Aquatic animals have developed a wide array of adaptations specific to life underwater, many of which are related to moving in the water column. Different swimming methods have emerged, such as lift-based flapping, drag-based body undulations, and paddling. Patterns occur across scales and taxa, where animals with analogous body features use similar locomotory methods. Metachronal paddling is one such wide-spread propulsion mechanism, occurring in taxa as diverse as ctenophores, crustaceans, and polychaetes. Sequential movement of multiple, near identical appendages, allows for steady swimming through phase-offsets between adjacent propulsors. The soft-bodied, holopelagic polychaete Tomopteris has two rows of segmental appendages (parapodia) positioned on opposite sides along its flexible body that move in a metachronal pattern. The outer one-third of their elongate parapodia consist of two paddle-like pinnules that can be spread or, when contracted, fold together to change the effective width of the appendage. Along with metachronal paddling, tomopterid bodies undulate laterally, and by using high speed video and numerical modeling, we seek to understand how these two behaviors combine to generate effective swimming. We collected animals using deep-diving remotely operated vehicles, and recorded video data in shore- and ship-based imaging laboratories. Kinematics were analyzed using landmark tracking of features in the video data. We determined that parapodia are actively moved to generate thrust and pinnules are actively spread and contracted to create differences in drag between power and recovery strokes. At the same time, the body wave increases the parapodium stroke angle and extends the parapodia into undisturbed water adjacent to the body, enhancing thrust. Based on kinematics measurements used as input to a 1D numerical model of drag-based swimming, we found that spreading of the pinnules during the power stroke provides a significant contribution to propulsion, similar to the contribution provided by the body wave. We conclude that tomopterids combine two different propulsive modes, which are enabled by their flexible body plan. This makes their anatomy and kinematics of interest not only for biologists, but also for soft materials and robotics engineers.

摘要

水生动物已经进化出了一系列适应水下生活的特殊能力,其中许多与在水柱中移动有关。不同的游泳方式应运而生,比如基于升力的拍打、基于阻力的身体波动以及划水。这些模式在不同尺度和分类群中都有出现,具有相似身体特征的动物会采用相似的运动方式。节律性划水就是一种广泛存在的推进机制,在栉水母、甲壳类动物和多毛类动物等不同分类群中都有出现。多个近乎相同的附肢依次运动,通过相邻推进器之间的相位偏移实现稳定游动。身体柔软、完全生活在远洋的多毛类动物汤氏桨虫,沿着其灵活的身体两侧有两排分段的附肢( parapodia ),这些附肢以节律性模式运动。其细长的 parapodia 外侧三分之一部分由两个桨状的小鳍组成,小鳍可以展开,收缩时则折叠在一起,从而改变附肢的有效宽度。除了节律性划水,汤氏桨虫的身体还会横向波动,通过高速视频和数值建模,我们试图了解这两种行为如何结合以实现有效的游动。我们使用深海遥控潜水器收集动物,并在岸上和船上的成像实验室记录视频数据。通过对视频数据中的特征进行地标跟踪来分析运动学。我们确定 parapodia 会主动移动以产生推力,小鳍会主动展开和收缩,从而在动力冲程和恢复冲程之间产生阻力差异。与此同时,身体波动增加了 parapodia 的冲程角度,并将 parapodia 延伸到身体附近未受干扰的水中,增强了推力。基于用作基于阻力游泳的一维数值模型输入的运动学测量,我们发现动力冲程中小鳍的展开对推进有显著贡献,类似于身体波动所提供的贡献。我们得出结论,汤氏桨虫结合了两种不同的推进模式,这得益于它们灵活的身体结构。这使得它们的解剖结构和运动学不仅对生物学家有吸引力,对软材料和机器人工程师也有吸引力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验