Department of Orofacial Sciences, University of California, San Francisco, CA, USA.
Preventive and Restorative Dental Sciences, University of California, San Francisco, CA, USA.
J Bone Miner Res. 2021 Sep;36(9):1781-1795. doi: 10.1002/jbmr.4329. Epub 2021 May 25.
Amelogenins, the principal proteins in the developing enamel microenvironment, self-assemble into supramolecular structures to govern the remodeling of a proteinaceous organic matrix into longitudinally ordered hydroxyapatite nanocrystal arrays. Extensive in vitro studies using purified native or recombinant proteins have revealed the potential of N-terminal amelogenin on protein self-assembly and its ability to guide the mineral deposition. We have previously identified a 14-aa domain (P2) of N-terminal amelogenin that can self-assemble into amyloid-like fibrils in vitro. Here, we investigated how this domain affects the ability of amelogenin self-assembling and stability of enamel matrix protein scaffolding in an in vivo animal model. Mice harboring mutant amelogenin lacking P2 domain had a hypoplastic, hypomineralized, and aprismatic enamel. In vitro, the mutant recombinant amelogenin without P2 had a reduced tendency to self-assemble and was prone to accelerated hydrolysis by MMP20, the prevailing metalloproteinase in early developing enamel matrix. A reduced amount of amelogenins and a lack of elongated fibrous assemblies in the development enamel matrix of mutant mice were evident compared with that in the wild-type mouse enamel matrix. Our study is the first to demonstrate that a subdomain (P2) at the N-terminus of amelogenin controls amelogenin's assembly into a transient protein scaffold that resists rapid proteolysis during enamel development in an animal model. Understanding the building blocks of fibrous scaffold that guides the longitudinal growth of hydroxyapatites in enamel matrix sheds light on protein-mediated enamel bioengineering. © 2021 American Society for Bone and Mineral Research (ASBMR).
釉原蛋白是发育中釉质微环境的主要蛋白质,可自组装成超分子结构,以控制蛋白有机基质重塑为纵向有序的羟磷灰石纳米晶体阵列。大量使用纯化的天然或重组蛋白的体外研究揭示了 N 端釉原蛋白在蛋白质自组装中的潜力及其引导矿化沉积的能力。我们之前已经鉴定出 N 端釉原蛋白的一个 14 个氨基酸的结构域 (P2),它可以在体外自组装成类淀粉样原纤维。在这里,我们研究了该结构域如何影响釉原蛋白自组装的能力和釉基质蛋白支架在体内动物模型中的稳定性。缺乏 P2 结构域的突变釉原蛋白的小鼠表现出釉质发育不全、矿化不全和无柱形。体外实验表明,缺乏 P2 结构域的突变重组釉原蛋白自组装的趋势降低,且易被 MMP20(早期釉质基质中主要的金属蛋白酶)加速水解。与野生型小鼠釉质基质相比,突变型小鼠釉质基质中可见釉原蛋白含量减少,且发育中的釉质基质中缺乏拉长的纤维状组装体。我们的研究首次证明,釉原蛋白 N 端的一个亚结构域(P2)控制着釉原蛋白组装成一种短暂的蛋白质支架,在动物模型中抵抗釉质发育过程中的快速蛋白水解。了解引导羟磷灰石在釉质基质中纵向生长的纤维状支架的组成部分,为蛋白介导的釉质生物工程提供了思路。