Center for Craniofacial Research and Diagnosis, Texas A&M College of Dentistry, Dallas, TX, USA.
Int J Oral Sci. 2019 Jan 5;11(1):8. doi: 10.1038/s41368-018-0038-6.
Tooth enamel is a complex mineralized tissue consisting of long and parallel apatite crystals configured into decussating enamel rods. In recent years, multiple approaches have been introduced to generate or regenerate this highly attractive biomaterial characterized by great mechanical strength paired with relative resilience and tissue compatibility. In the present review, we discuss five pathways toward enamel tissue engineering, (i) enamel synthesis using physico-chemical means, (ii) protein matrix-guided enamel crystal growth, (iii) enamel surface remineralization, (iv) cell-based enamel engineering, and (v) biological enamel regeneration based on de novo induction of tooth morphogenesis. So far, physical synthesis approaches using extreme environmental conditions such as pH, heat and pressure have resulted in the formation of enamel-like crystal assemblies. Biochemical methods relying on enamel proteins as templating matrices have aided the growth of elongated calcium phosphate crystals. To illustrate the validity of this biochemical approach we have successfully grown enamel-like apatite crystals organized into decussating enamel rods using an organic enamel protein matrix. Other studies reviewed here have employed amelogenin-derived peptides or self-assembling dendrimers to re-mineralize mineral-depleted white lesions on tooth surfaces. So far, cell-based enamel tissue engineering has been hampered by the limitations of presently existing ameloblast cell lines. Going forward, these limitations may be overcome by new cell culture technologies. Finally, whole-tooth regeneration through reactivation of the signaling pathways triggered during natural enamel development represents a biological avenue toward faithful enamel regeneration. In the present review we have summarized the state of the art in enamel tissue engineering and provided novel insights into future opportunities to regenerate this arguably most fascinating of all dental tissues.
牙釉质是一种复杂的矿化组织,由长而平行的磷灰石晶体组成,排列成交错的釉柱。近年来,已经引入了多种方法来生成或再生这种具有高吸引力的生物材料,其特点是具有优异的机械强度,同时具有相对的弹性和组织相容性。在本综述中,我们讨论了牙釉质组织工程的五种途径,(i)使用物理化学方法合成牙釉质,(ii)蛋白质基质引导牙釉质晶体生长,(iii)牙釉质表面再矿化,(iv)基于细胞的牙釉质工程,以及(v)基于牙齿形态发生的从头诱导的生物牙釉质再生。到目前为止,使用极端环境条件(如 pH 值、温度和压力)的物理合成方法已经导致了类似牙釉质的晶体组装体的形成。依赖于牙釉质蛋白作为模板基质的生化方法已经帮助了长而钙磷酸盐晶体的生长。为了说明这种生化方法的有效性,我们已经成功地使用有机牙釉质蛋白基质生长了类似于牙釉质的磷灰石晶体,这些晶体排列成交错的釉柱。本文还综述了其他研究,这些研究利用釉原蛋白衍生肽或自组装树突状聚合物来再矿化牙齿表面的脱矿白色病变。到目前为止,基于细胞的牙釉质组织工程受到目前现有的成釉细胞系的限制。未来,这些限制可能会被新的细胞培养技术所克服。最后,通过重新激活天然牙釉质发育过程中触发的信号通路来实现全牙再生,代表了一种实现牙釉质再生的生物学途径。在本综述中,我们总结了牙釉质组织工程的最新进展,并为未来再生这种可能是所有牙齿组织中最引人注目的组织提供了新的见解。