Quantitative Biology Unit, National Cytometry Platform, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg.
Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg.
Cytometry A. 2021 Sep;99(9):930-938. doi: 10.1002/cyto.a.24359. Epub 2021 May 6.
The increasing number of measurable markers and the need to integrate flow cytometry datasets with data generated by other high throughput technologies, require the use of innovative tools, easy enough to be used by people with diverse levels of informatics skills. Flow cytometry analysis software has principally been designed for single sample analysis and it does not cover all the successive analysis steps such as integration with metadata and complex visualization. Here, we illustrated the use of data integration and visualization tools generally used in the business sector to analyze datasets generated by mass and flow cytometry. We selected a study that used mass cytometry to characterize immune cells in lung adenocarcinoma and a second study that used flow cytometry to characterize the expression signature of CD markers on human immune cells. These two examples showed the effectiveness of these tools in the analysis of cytometry data and the possibility to expand their use in any field of biology.
随着可测量标志物数量的增加,以及将流式细胞仪数据集与其他高通量技术生成的数据进行整合的需求,我们需要使用创新工具,这些工具必须简单易用,以便不同信息化技能水平的人都能够使用。流式细胞仪分析软件主要用于单个样本的分析,它并不能涵盖所有后续的分析步骤,例如与元数据的整合和复杂的可视化。在这里,我们展示了在商业领域中通常用于分析质谱和流式细胞仪生成的数据集的数据集成和可视化工具的使用。我们选择了一个使用质谱流式细胞术来描述肺腺癌中免疫细胞特征的研究,以及另一个使用流式细胞术来描述人类免疫细胞上 CD 标志物表达特征的研究。这两个例子表明了这些工具在细胞术数据分析中的有效性,以及将它们扩展到生物学任何领域的可能性。