Suppr超能文献

肾脏病学家的药物流行病学(第2部分):潜在偏倚及其克服方法

Pharmacoepidemiology for nephrologists (part 2): potential biases and how to overcome them.

作者信息

Fu Edouard L, van Diepen Merel, Xu Yang, Trevisan Marco, Dekker Friedo W, Zoccali Carmine, Jager Kitty, Carrero Juan Jesus

机构信息

Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands.

Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Solna, Sweden.

出版信息

Clin Kidney J. 2020 Dec 14;14(5):1317-1326. doi: 10.1093/ckj/sfaa242. eCollection 2021 May.

Abstract

Observational pharmacoepidemiological studies using routinely collected healthcare data are increasingly being used in the field of nephrology to answer questions on the effectiveness and safety of medications. This review discusses a number of biases that may arise in such studies and proposes solutions to minimize them during the design or statistical analysis phase. We first describe designs to handle confounding by indication (e.g. active comparator design) and methods to investigate the influence of unmeasured confounding, such as the E-value, the use of negative control outcomes and control cohorts. We next discuss prevalent user and immortal time biases in pharmacoepidemiology research and how these can be prevented by focussing on incident users and applying either landmarking, using a time-varying exposure, or the cloning, censoring and weighting method. Lastly, we briefly discuss the common issues with missing data and misclassification bias. When these biases are properly accounted for, pharmacoepidemiological observational studies can provide valuable information for clinical practice.

摘要

利用常规收集的医疗保健数据进行的观察性药物流行病学研究在肾脏病学领域越来越多地被用于回答有关药物有效性和安全性的问题。本综述讨论了此类研究中可能出现的一些偏差,并提出了在设计或统计分析阶段将其降至最低的解决方案。我们首先描述处理适应症混杂的设计(例如活性对照设计)以及调查未测量混杂因素影响的方法,如E值、阴性对照结局的使用和对照队列。接下来,我们讨论药物流行病学研究中普遍存在的使用者偏差和不朽时间偏差,以及如何通过关注新使用者并应用地标法、使用随时间变化的暴露或克隆、删失和加权方法来预防这些偏差。最后,我们简要讨论缺失数据和错误分类偏差的常见问题。当这些偏差得到妥善处理时,药物流行病学观察性研究可为临床实践提供有价值的信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/22e1/8087121/103e8012e591/sfaa242f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验