Suppr超能文献

由基于四苯并萘的共轭微孔聚合物和碳纳米管分散体制备的高性能超级电容器电极。

High-Performance Supercapacitor Electrodes Prepared From Dispersions of Tetrabenzonaphthalene-Based Conjugated Microporous Polymers and Carbon Nanotubes.

作者信息

Samy Maha Mohamed, Mohamed Mohamed Gamal, El-Mahdy Ahmed F M, Mansoure Tharwat Hassan, Wu Kevin C-W, Kuo Shiao-Wei

机构信息

Department of Materials and Optoelectronic Science, Center of Crystal Research, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan.

Chemistry Department, Faculty of Science, Assiut University, Assiut 71516, Egypt.

出版信息

ACS Appl Mater Interfaces. 2021 Nov 10;13(44):51906-51916. doi: 10.1021/acsami.1c05720. Epub 2021 May 7.

Abstract

In this study, we prepared a series of conjugated microporous polymers (CMPs) through Sonogashira-Hagihara cross-couplings of a tetrabenzonaphthalene (TBN) monomer with pyrene (Py), tetraphenylethylene (TPE), and carbazole (Car) units and examined their chemical structures, thermal stabilities, morphologies, crystallinities, and porosities. TBN-TPE-CMP possessed a high surface area (1150 m g) and thermal stability ( = 505 °C; char yield = 68 wt %) superior to those of TBN-Py-CMP and TBN-Car-CMP. To improve the conductivity of the TBN-CMP materials, we blended them with highly conductive single-walled carbon nanotubes (SWCNTs). Electrochemical measurements revealed that the TBN-Py-CMP/SWCNT nanocomposite had high capacitance (430 F g) at a current density of 0.5 A g and outstanding capacitance retention (99.18%) over 2000 cycles; these characteristics were superior to those of the TBN-TPE-CMP/SWCNT and TBN-Car-CMP/SWCNT nanocomposites.

摘要

在本研究中,我们通过四苯并萘(TBN)单体与芘(Py)、四苯乙烯(TPE)和咔唑(Car)单元的Sonogashira-Hagihara交叉偶联反应制备了一系列共轭微孔聚合物(CMPs),并研究了它们的化学结构、热稳定性、形态、结晶度和孔隙率。TBN-TPE-CMP具有较高的比表面积(1150 m²/g)和热稳定性(T₅₀₅ = 505 °C;残炭产率 = 68 wt%),优于TBN-Py-CMP和TBN-Car-CMP。为了提高TBN-CMP材料的导电性,我们将它们与高导电性的单壁碳纳米管(SWCNTs)混合。电化学测量结果表明,TBN-Py-CMP/SWCNT纳米复合材料在电流密度为0.5 A/g时具有高电容(430 F/g),并且在2000次循环后具有出色的电容保持率(99.18%);这些特性优于TBN-TPE-CMP/SWCNT和TBN-Car-CMP/SWCNT纳米复合材料。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验