Department of Materials and Optoelectronic Science, Center of Crystal Research, National Sun Yat-sen University, Kaohsiung 804, Taiwan.
Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 804201, Taiwan.
Int J Mol Sci. 2023 Aug 2;24(15):12371. doi: 10.3390/ijms241512371.
This work focuses on porous organic polymers (POPs), which have gained significant global attention for their potential in energy storage and carbon dioxide (CO) capture. The study introduces the development of two novel porous organic polymers, namely FEC-Mel and FEC-PBDT POPs, constructed using a simple method based on the ferrocene unit (FEC) combined with melamine (Mel) and 6,6'-(1,4-phenylene)bis(1,3,5-triazine-2,4-diamine) (PBDT). The synthesis involved the condensation reaction between ferrocenecarboxaldehyde monomer (FEC-CHO) and the respective aryl amines. Several analytical methods were employed to investigate the physical characteristics, chemical structure, morphology, and potential applications of these porous materials. Through thermogravimetric analysis (TGA), it was observed that both FEC-Mel and FEC-PBDT POPs exhibited exceptional thermal stability. FEC-Mel POP displayed a higher surface area and porosity, measuring 556 m g and 1.26 cm g, respectively. These FEC-POPs possess large surface areas, making them promising materials for applications such as supercapacitor (SC) electrodes and gas adsorption. With 82 F g of specific capacitance at 0.5 A g, the FEC-PBDT POP electrode has exceptional electrochemical characteristics. In addition, the FEC-Mel POP showed remarkable CO absorption capabilities, with 1.34 and 1.75 mmol g (determined at 298 and 273 K; respectively). The potential of the FEC-POPs created in this work for CO capacity and electrical testing are highlighted by these results.
这项工作侧重于多孔有机聚合物(POPs),由于其在储能和二氧化碳(CO)捕获方面的潜力,已引起全球的广泛关注。本研究介绍了两种新型多孔有机聚合物的开发,即使用基于二茂铁单元(FEC)与三聚氰胺(Mel)和 6,6'-(1,4-亚苯基)双(1,3,5-三嗪-2,4-二胺)(PBDT)的简单方法构建的 FEC-Mel 和 FEC-PBDT POPs。合成涉及二茂铁甲醛单体(FEC-CHO)与相应芳胺之间的缩合反应。采用了几种分析方法来研究这些多孔材料的物理特性、化学结构、形态和潜在应用。通过热重分析(TGA),观察到 FEC-Mel 和 FEC-PBDT POPs 均表现出优异的热稳定性。FEC-Mel POP 的比表面积和孔隙率更高,分别为 556 m²/g 和 1.26 cm³/g。这些 FEC-POPs 具有较大的表面积,使其成为超级电容器(SC)电极和气体吸附等应用的有前途的材料。FEC-PBDT POP 电极具有出色的电化学特性,在 0.5 A/g 时具有 82 F/g 的比电容。此外,FEC-Mel POP 显示出显著的 CO 吸收能力,在 298 K 和 273 K 下分别为 1.34 和 1.75 mmol/g。这些结果突出了本工作中所制备的 FEC-POPs 在 CO 容量和电测试方面的潜力。