Biomechanics Lab, Division of Orthopaedic Surgery, Oslo University Hospital, Norway.
Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Norway.
Acta Chir Orthop Traumatol Cech. 2021;88(2):144-152.
PURPOSE OF THE STUDY To improve the important torsional, bending and compressive stability in femoral neck fixation, locking plates have been the latest contribution. However, increased strength by restricted fracture motion may come at expense of an altered load distribution and failure patterns. Within locking plate technology, the important intermediate fracture compression may principally be achieved by multiple sliding screws passing through a sideplate fixed to the femur or connected to an interlocking plate not fixed to the femur laterally, sliding "en bloc" with the plate. While biomechanical studies may deliver the short-time patient safety requirements in implant development, no adequate failure evaluation has been performed with interlocking devices ex vivo in this setting. In the present biomechanical study, we analysed if a novel femoral neck interlocking plate with pins could improve fixation performance by changing the parameters involved in the failure mechanism in terms of fixation strength, fracture motion, load distribution and failure pattern. MATERIAL AND METHODS Sixteen pairs of human femurs with stable subcapital osteotomies were fixated by 2 pins or 3 pins interlocked in a plate using a paired design. Femurs were loaded non-destructively to 10° torsion around the neck axis, 200 N anteroposterior bending and 500 N vertical compression in 7° adduction with 1 Hz in 20 000 cycles, and were subsequently subjected to destructive compression to evaluate failure patterns. Bending stiffness, compressive stiffness and displacement from compressive testing reflected fracture motion. Torque and compression to failure replicated known failure mechanisms and defined strength. To evaluate load distribution, associations between biomechanical parameters and measured local bone mineral measurements by quantitative CT were analysed. RESULTS Interlocked pins increased mean strength 73% in torsion and 39% in compression (p = 0.038). Strength was related to all 4 regional mineral masses from the femoral head to subtrochanterically with interlocking (r = 0.64-0.83, p = 0.034), while only to mineral masses in the femoral head in compression and to the head, neck and trochanterically in torsion with individual pins (r = 0.67-0.78, p = 0.024). No difference was detected in fracture motion or failure pattern. DISCUSSION Within the last decade, angular stable implants have expanded our therapeutic arsenal of femoral neck fractures. Increased stability at the expense of altered devastating failure patterns was not retrieved in our study. The broadened understanding of the effect of interlocking pins by an isolated plate as in the current study involved the feature to gain fixation strength. By permitting fracture compression, and through a significant change of correlations between mechanical parameters and local bone mineral factors, a lateral redistribution of load with interlocked pins from the fragile bone medially to the more solid lateral bone was demonstrated. Regarding the long-term patient safety of interlocked pins and healing complications of non-union and segmental collapse of the femoral head, a definite conclusion may be premature. However, the improved biomechanics of an interlocking plate must be considered a favourable development of the pin concept. CONCLUSIONS Interlocked pins may improve fixation performance by a better load distribution, not by restricting fracture motion with corresponding altered failure patterns. This is encouraging and a challenge to complete further studies of the interlocking plate technology in the struggle to find the optimal treatment of the femoral neck fracture. Key words: femoral neck fracture, biomechanics, cadaver bone, bone mineral, internal fixation, locking plate, interlocked pins.
目的
为了提高股骨颈固定的重要扭转、弯曲和抗压稳定性,锁定板是最新的贡献。然而,通过限制骨折运动来增加强度可能会以改变负荷分布和失效模式为代价。在锁定板技术中,重要的中间骨折压缩主要可以通过多个穿过侧板的滑动螺钉来实现,侧板固定在股骨上或连接到不固定在股骨上的锁定板上,与板一起“整体滑动”。虽然生物力学研究可能满足植入物开发的短期患者安全性要求,但在这种情况下,尚未对体外使用锁定装置进行充分的失效评估。在本生物力学研究中,我们分析了一种新型带有销钉的股骨颈锁定板是否可以通过改变与固定强度、骨折运动、负荷分布和失效模式相关的失效机制中的参数来改善固定性能。
材料和方法
使用配对设计,将 16 对具有稳定的股骨颈下部切开术的人股骨用 2 个或 3 个销钉锁定在板中。股骨在 1 Hz 下以 20 000 次循环进行 10°颈轴扭转、200 N 前后弯曲和 500 N 垂直压缩的非破坏性加载,随后进行破坏性压缩以评估失效模式。弯曲刚度、压缩刚度和压缩测试中的位移反映了骨折运动。扭矩和压缩至失效复制了已知的失效机制并确定了强度。为了评估负荷分布,分析了生物力学参数与通过定量 CT 测量的局部骨矿物质之间的关系。
结果
锁定销增加了扭转时的平均强度 73%,压缩时的强度增加了 39%(p = 0.038)。强度与从股骨头到转子下的所有 4 个区域矿物质质量有关,与锁定有关(r = 0.64-0.83,p = 0.034),而仅与压缩时的股骨头矿物质质量以及扭转时的股骨头、颈和转子下的矿物质质量有关(r = 0.67-0.78,p = 0.024)。在骨折运动或失效模式方面没有差异。
讨论
在过去的十年中,角稳定植入物扩大了我们治疗股骨颈骨折的治疗方案。在我们的研究中,没有发现增加稳定性以换取破坏性失效模式的情况。当前研究中,单独板的锁定销的作用的广泛理解涉及获得固定强度的特征。通过允许骨折压缩,并通过机械参数与局部骨矿物质因素之间的相关性发生显著变化,从内侧脆弱的骨到更坚固的外侧骨,演示了负荷的横向重新分布。关于锁定销的长期患者安全性和股骨头非愈合和节段性塌陷的愈合并发症,下结论可能还为时过早。然而,锁定板技术的改进生物力学性能必须被认为是销概念的一个有利发展。
结论
锁定销通过更好的负荷分布而不是通过限制骨折运动和相应的改变失效模式来提高固定性能。这是令人鼓舞的,也是一个挑战,需要进一步研究锁定板技术,以找到股骨颈骨折的最佳治疗方法。
股骨颈骨折、生物力学、尸体骨、骨矿物质、内固定、锁定板、锁定销