Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, 06466, Seeland, Germany.
Department of Plant Sciences One Shields Avenue, University of California, Davis, CA, 95616, USA.
Theor Appl Genet. 2021 Jul;134(7):1925-1943. doi: 10.1007/s00122-020-03743-5. Epub 2021 May 7.
Genetic modification of spike architecture is essential for improving wheat yield. Newly identified loci for the 'Miracle wheat' phenotype on chromosomes 1AS and 2BS have significant effects on spike traits. The wheat (Triticum ssp.) inflorescence, also known as a spike, forms an unbranched inflorescence in which the inflorescence meristem generates axillary spikelet meristems (SMs) destined to become sessile spikelets. Previously, we identified the putatively causative mutation in the branched head (bh) gene (TtBH-A1) of tetraploid wheat (T. turgidum convar. compositum (L.f.) Filat.) responsible for the loss of SM identity, converting the non-branching spike to a branched wheat spike. In the current study, we performed whole-genome quantitative trait loci (QTL) analysis using 146 recombinant inbred lines (RILs) derived from a cross between spike-branching wheat ('Miracle wheat') and an elite durum wheat cultivar showing broad phenotypic variation for spike architecture. Besides the previously found gene at the bh-A1 locus on the short arm of chromosome 2A, we also mapped two new modifier QTL for spike-branching on the short arm of chromosome 1A, termed bh-A2, and 2BS. Using biparental mapping population and GWAS in 302 diverse accessions, the 2BS locus was highly associated with coding sequence variation found at the homoeo-allele of TtBH-B1 (bh-B1). Thus, RILs that combined both bh-A1 and bh-B1 alleles showed additive genetic effects leading to increased penetrance and expressivity of the supernumerary spikelet and/or mini-spike formation.
对 Spike 结构进行遗传修饰对于提高小麦产量至关重要。在染色体 1AS 和 2BS 上发现的新的“Miracle wheat”表型基因座对 Spike 特征有显著影响。小麦(Triticum ssp.)花序,也称为 Spike,形成一个不分枝的花序,花序分生组织产生腋生小穗分生组织(SMs),注定成为无梗小穗。以前,我们鉴定了四倍体小麦(T. turgidum convar. compositum(L.f.)Filat.)分枝头(bh)基因(TtBH-A1)中的假定致病突变,该突变导致 SM 身份丧失,将非分枝 Spike 转化为分枝小麦 Spike。在本研究中,我们使用来自分枝小麦(“Miracle wheat”)和一个表现出广泛 Spike 结构表型变异的优质硬粒小麦品种的杂交衍生的 146 个重组自交系(RIL)进行了全基因组数量性状基因座(QTL)分析。除了先前在 2A 染色体短臂上发现的 bh-A1 基因座上的基因外,我们还在 1A 染色体短臂上定位了两个新的 Spike 分枝修饰 QTL,分别称为 bh-A2 和 2BS。使用双亲图谱种群和 302 个不同的访问者的 GWAS,2BS 基因座与在 TtBH-B1(bh-B1)同系等位基因中发现的编码序列变异高度相关。因此,同时结合了 bh-A1 和 bh-B1 等位基因的 RIL 表现出累加遗传效应,导致额外小穗和/或小穗形成的穿透率和表达率增加。