文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

深度学习在超声医学中的应用研究:人工智能赋能的超声在改善临床工作流程中的应用

A Survey of Deep-Learning Applications in Ultrasound: Artificial Intelligence-Powered Ultrasound for Improving Clinical Workflow.

机构信息

Radiology Informatics Lab, Department of Radiology, Mayo Clinic, Rochester, Minnesota.

Radiology Informatics Lab, Department of Radiology, Mayo Clinic, Rochester, Minnesota.

出版信息

J Am Coll Radiol. 2019 Sep;16(9 Pt B):1318-1328. doi: 10.1016/j.jacr.2019.06.004.


DOI:10.1016/j.jacr.2019.06.004
PMID:31492410
Abstract

Ultrasound is the most commonly used imaging modality in clinical practice because it is a nonionizing, low-cost, and portable point-of-care imaging tool that provides real-time images. Artificial intelligence (AI)-powered ultrasound is becoming more mature and getting closer to routine clinical applications in recent times because of an increased need for efficient and objective acquisition and evaluation of ultrasound images. Because ultrasound images involve operator-, patient-, and scanner-dependent variations, the adaptation of classical machine learning methods to clinical applications becomes challenging. With their self-learning ability, deep-learning (DL) methods are able to harness exponentially growing graphics processing unit computing power to identify abstract and complex imaging features. This has given rise to tremendous opportunities such as providing robust and generalizable AI models for improving image acquisition, real-time assessment of image quality, objective diagnosis and detection of diseases, and optimizing ultrasound clinical workflow. In this report, the authors review current DL approaches and research directions in rapidly advancing ultrasound technology and present their outlook on future directions and trends for DL techniques to further improve diagnosis, reduce health care cost, and optimize ultrasound clinical workflow.

摘要

超声是临床实践中最常用的成像方式,因为它是非电离、低成本、便携的即时成像工具,可提供实时图像。由于对高效、客观获取和评估超声图像的需求增加,近年来,人工智能 (AI) 驱动的超声技术变得更加成熟,并逐渐接近常规临床应用。由于超声图像涉及操作人员、患者和扫描仪的差异,因此将经典机器学习方法应用于临床应用具有挑战性。深度学习 (DL) 方法具有自我学习能力,能够利用不断增长的图形处理单元计算能力来识别抽象和复杂的成像特征。这为提供强大且可推广的 AI 模型以改善图像采集、实时评估图像质量、客观诊断和疾病检测以及优化超声临床工作流程等方面带来了巨大的机会。在本报告中,作者回顾了在快速发展的超声技术中当前的 DL 方法和研究方向,并对 DL 技术的未来方向和趋势进行了展望,以进一步改善诊断、降低医疗成本和优化超声临床工作流程。

相似文献

[1]
A Survey of Deep-Learning Applications in Ultrasound: Artificial Intelligence-Powered Ultrasound for Improving Clinical Workflow.

J Am Coll Radiol. 2019-9

[2]
Artificial Intelligence (AI)-Empowered Echocardiography Interpretation: A State-of-the-Art Review.

J Clin Med. 2021-3-30

[3]
Artificial intelligence in medical imaging of the liver.

World J Gastroenterol. 2019-2-14

[4]
Artificial intelligence in ultrasound.

Eur J Radiol. 2021-6

[5]
Current status and future trends of clinical diagnoses via image-based deep learning.

Theranostics. 2019-10-12

[6]
Strengths, Weaknesses, Opportunities, and Threats Analysis of Artificial Intelligence and Machine Learning Applications in Radiology.

J Am Coll Radiol. 2019-9

[7]
Artificial Intelligence in Breast Imaging: Potentials and Limitations.

AJR Am J Roentgenol. 2018-11-13

[8]
Artificial Intelligence in Quantitative Ultrasound Imaging: A Survey.

J Ultrasound Med. 2022-6

[9]
Exploring the Potential of Artificial Intelligence in Breast Ultrasound.

Crit Rev Oncog. 2024

[10]
Machine learning for medical ultrasound: status, methods, and future opportunities.

Abdom Radiol (NY). 2018-4

引用本文的文献

[1]
FetalMLOps: operationalizing machine learning models for standard fetal ultrasound plane classification.

Med Biol Eng Comput. 2025-9-8

[2]
Prenatal diagnosis of cerebellar hypoplasia in fetal ultrasound using deep learning under the constraint of the anatomical structures of the cerebellum and cistern.

Pediatr Radiol. 2025-9-5

[3]
URFM: A general Ultrasound Representation Foundation Model for advancing ultrasound image diagnosis.

iScience. 2025-6-18

[4]
Integrating Deep Learning and Radiomics in Differentiating Papillary Thyroid Microcarcinoma from Papillary Thyroid Carcinoma with Ultrasound Images.

Cancer Manag Res. 2025-7-8

[5]
Target identification of natural products in cancer with chemical proteomics and artificial intelligence approaches.

Cancer Biol Med. 2025-7-9

[6]
Interpretable machine learning models for survival prediction in prostate cancer bone metastases.

Sci Rep. 2025-7-6

[7]
Dual-stage artificial intelligence-powered screening for accurate classification of thyroid nodules: enhancing fine needle aspiration biopsy precision.

Quant Imaging Med Surg. 2025-6-6

[8]
Clinical validation of AI assisted animal ultrasound models for diagnosis of early liver trauma.

Sci Rep. 2025-7-2

[9]
Trust of Artificial Intelligence-Augmented Point-of-Care Ultrasound Among Pediatric Emergency Physicians.

J Am Coll Emerg Physicians Open. 2025-6-5

[10]
Application research of artificial intelligence software in the analysis of thyroid nodule ultrasound image characteristics.

PLoS One. 2025-6-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索