Radiology Informatics Lab, Department of Radiology, Mayo Clinic, Rochester, Minnesota.
Radiology Informatics Lab, Department of Radiology, Mayo Clinic, Rochester, Minnesota.
J Am Coll Radiol. 2019 Sep;16(9 Pt B):1318-1328. doi: 10.1016/j.jacr.2019.06.004.
Ultrasound is the most commonly used imaging modality in clinical practice because it is a nonionizing, low-cost, and portable point-of-care imaging tool that provides real-time images. Artificial intelligence (AI)-powered ultrasound is becoming more mature and getting closer to routine clinical applications in recent times because of an increased need for efficient and objective acquisition and evaluation of ultrasound images. Because ultrasound images involve operator-, patient-, and scanner-dependent variations, the adaptation of classical machine learning methods to clinical applications becomes challenging. With their self-learning ability, deep-learning (DL) methods are able to harness exponentially growing graphics processing unit computing power to identify abstract and complex imaging features. This has given rise to tremendous opportunities such as providing robust and generalizable AI models for improving image acquisition, real-time assessment of image quality, objective diagnosis and detection of diseases, and optimizing ultrasound clinical workflow. In this report, the authors review current DL approaches and research directions in rapidly advancing ultrasound technology and present their outlook on future directions and trends for DL techniques to further improve diagnosis, reduce health care cost, and optimize ultrasound clinical workflow.
超声是临床实践中最常用的成像方式,因为它是非电离、低成本、便携的即时成像工具,可提供实时图像。由于对高效、客观获取和评估超声图像的需求增加,近年来,人工智能 (AI) 驱动的超声技术变得更加成熟,并逐渐接近常规临床应用。由于超声图像涉及操作人员、患者和扫描仪的差异,因此将经典机器学习方法应用于临床应用具有挑战性。深度学习 (DL) 方法具有自我学习能力,能够利用不断增长的图形处理单元计算能力来识别抽象和复杂的成像特征。这为提供强大且可推广的 AI 模型以改善图像采集、实时评估图像质量、客观诊断和疾病检测以及优化超声临床工作流程等方面带来了巨大的机会。在本报告中,作者回顾了在快速发展的超声技术中当前的 DL 方法和研究方向,并对 DL 技术的未来方向和趋势进行了展望,以进一步改善诊断、降低医疗成本和优化超声临床工作流程。
World J Gastroenterol. 2019-2-14
Eur J Radiol. 2021-6
Theranostics. 2019-10-12
AJR Am J Roentgenol. 2018-11-13
J Ultrasound Med. 2022-6
Crit Rev Oncog. 2024
Abdom Radiol (NY). 2018-4
Med Biol Eng Comput. 2025-9-8
J Am Coll Emerg Physicians Open. 2025-6-5