Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK.
Department of Cardiology, Centre for Cardiac, Vascular, Pulmonary and Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.
Cochrane Database Syst Rev. 2021 May 7;5(5):CD010876. doi: 10.1002/14651858.CD010876.pub3.
The impact of exercise-based cardiac rehabilitation (CR) following heart valve surgery is uncertain. We conducted an update of this systematic review and a meta-analysis to assess randomised controlled trial evidence for the use of exercise-based CR following heart valve surgery.
To assess the benefits and harms of exercise-based CR compared with no exercise training in adults following heart valve surgery or repair, including both percutaneous and surgical procedures. We considered CR programmes consisting of exercise training with or without another intervention (such as an intervention with a psycho-educational component).
We searched the Cochrane Central Register of Clinical Trials (CENTRAL), in the Cochrane Library; MEDLINE (Ovid); Embase (Ovid); the Cumulative Index to Nursing and Allied Health Literature (CINAHL; EBSCO); PsycINFO (Ovid); Latin American Caribbean Health Sciences Literature (LILACS; Bireme); and Conference Proceedings Citation Index-Science (CPCI-S) on the Web of Science (Clarivate Analytics) on 10 January 2020. We searched for ongoing trials from ClinicalTrials.gov, Clinical-trials.com, and the World Health Organization International Clinical Trials Registry Platform on 15 May 2020.
We included randomised controlled trials that compared exercise-based CR interventions with no exercise training. Trial participants comprised adults aged 18 years or older who had undergone heart valve surgery for heart valve disease (from any cause) and had received heart valve replacement or heart valve repair. Both percutaneous and surgical procedures were included.
Two review authors independently extracted data. We assessed the risk of systematic errors ('bias') by evaluating risk domains using the 'Risk of bias' (RoB2) tool. We assessed clinical and statistical heterogeneity. We performed meta-analyses using both fixed-effect and random-effects models. We used the GRADE approach to assess the quality of evidence for primary outcomes (all-cause mortality, all-cause hospitalisation, and health-related quality of life).
We included six trials with a total of 364 participants who have had open or percutaneous heart valve surgery. For this updated review, we identified four additional trials (216 participants). One trial had an overall low risk of bias, and we classified the remaining five trials as having some concerns. Follow-up ranged across included trials from 3 to 24 months. Based on data at longest follow-up, a total of nine participants died: 4 CR versus 5 control (relative risk (RR) 0.83, 95% confidence interval (CI) 0.26 to 2.68; 2 trials, 131 participants; GRADE quality of evidence very low). No trials reported on cardiovascular mortality. One trial reported one cardiac-related hospitalisation in the CR group and none in the control group (RR 2.72, 95% CI 0.11 to 65.56; 1 trial, 122 participants; GRADE quality of evidence very low). We are uncertain about health-related quality of life at completion of the intervention in CR compared to control (Short Form (SF)-12/36 mental component: mean difference (MD) 1.28, 95% CI -1.60 to 4.16; 2 trials, 150 participants; GRADE quality of evidence very low; and SF-12/36 physical component: MD 2.99, 95% CI -5.24 to 11.21; 2 trials, 150 participants; GRADE quality of evidence very low), or at longest follow-up (SF-12/36 mental component: MD -1.45, 95% CI -4.70 to 1.80; 2 trials, 139 participants; GRADE quality of evidence very low; and SF-12/36 physical component: MD -0.87, 95% CI -3.57 to 1.83; 2 trials, 139 participants; GRADE quality of evidence very low). AUTHORS' CONCLUSIONS: Due to lack of evidence and the very low quality of available evidence, this updated review is uncertain about the impact of exercise-CR in this population in terms of mortality, hospitalisation, and health-related quality of life. High-quality (low risk of bias) evidence on the impact of CR is needed to inform clinical guidelines and routine practice.
心脏瓣膜手术后基于运动的心脏康复(CR)的影响尚不确定。我们对这项系统评价进行了更新和荟萃分析,以评估心脏瓣膜手术后基于运动的 CR 对随机对照试验证据的影响。
评估心脏瓣膜手术后(包括经皮和手术),与不进行运动训练相比,基于运动的 CR 的益处和危害。我们考虑了由运动训练和/或其他干预措施(如具有心理教育成分的干预措施)组成的 CR 方案。
我们在 Cochrane 图书馆的 Cochrane 中央对照试验注册库(CENTRAL)、Ovid 中的 MEDLINE、Ovid 中的 Embase、EBSCO 中的 Cumulative Index to Nursing and Allied Health Literature(CINAHL)、Ovid 中的 PsycINFO、Clarivate Analytics 上的 Web of Science 中的 Conference Proceedings Citation Index-Science(CPCI-S)于 2020 年 1 月 10 日进行了检索。我们于 2020 年 5 月 15 日在 ClinicalTrials.gov、Clinical-trials.com 和世界卫生组织国际临床试验注册平台上搜索了正在进行的试验。
我们纳入了比较基于运动的 CR 干预与不进行运动训练的随机对照试验。试验参与者为年龄在 18 岁或以上的成年人,他们因心脏瓣膜疾病(任何原因)接受了心脏瓣膜置换或修复手术,并接受了心脏瓣膜置换或修复手术。包括经皮和手术程序。
两位综述作者独立提取数据。我们使用“风险偏倚”(RoB2)工具评估风险领域,评估系统错误(“偏倚”)的风险。我们评估了临床和统计学异质性。我们使用固定效应和随机效应模型进行了荟萃分析。我们使用 GRADE 方法评估了主要结局(全因死亡率、全因住院率和健康相关生活质量)的证据质量。
我们纳入了六项试验,共有 364 名接受过开放性或经皮心脏瓣膜手术的参与者。对于这次更新的综述,我们又确定了四项试验(216 名参与者)。一项试验的总体风险偏倚较低,我们将其余五项试验归类为存在一些关注。随访时间在纳入的试验中从 3 个月到 24 个月不等。根据最长随访时间的数据,共有 9 名参与者死亡:4 例 CR 组和 5 例对照组(RR 0.83,95%CI 0.26 至 2.68;2 项试验,131 名参与者;GRADE 证据质量非常低)。没有试验报告心血管死亡率。一项试验报告了 CR 组 1 例心脏相关住院治疗,对照组无(RR 2.72,95%CI 0.11 至 65.56;1 项试验,122 名参与者;GRADE 证据质量非常低)。我们不确定在完成干预后,CR 组与对照组的健康相关生活质量(SF-12/36 精神成分:MD 1.28,95%CI -1.60 至 4.16;2 项试验,150 名参与者;GRADE 证据质量非常低;和 SF-12/36 身体成分:MD 2.99,95%CI -5.24 至 11.21;2 项试验,150 名参与者;GRADE 证据质量非常低)或在最长随访时间(SF-12/36 精神成分:MD -1.45,95%CI -4.70 至 1.80;2 项试验,139 名参与者;GRADE 证据质量非常低;和 SF-12/36 身体成分:MD -0.87,95%CI -3.57 至 1.83;2 项试验,139 名参与者;GRADE 证据质量非常低)。
由于缺乏证据和可用证据的质量非常低,本更新综述对于心脏瓣膜手术后死亡率、住院率和健康相关生活质量方面的 CR 影响,结果并不确定。需要高质量(低风险偏倚)的 CR 影响证据来为临床指南和常规实践提供信息。