文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

深度学习增强的具有连续验证的光场成像。

Deep learning-enhanced light-field imaging with continuous validation.

机构信息

Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany.

Department of Informatics, Technical University of Munich, Garching, Germany.

出版信息

Nat Methods. 2021 May;18(5):557-563. doi: 10.1038/s41592-021-01136-0. Epub 2021 May 7.


DOI:10.1038/s41592-021-01136-0
PMID:33963344
Abstract

Visualizing dynamic processes over large, three-dimensional fields of view at high speed is essential for many applications in the life sciences. Light-field microscopy (LFM) has emerged as a tool for fast volumetric image acquisition, but its effective throughput and widespread use in biology has been hampered by a computationally demanding and artifact-prone image reconstruction process. Here, we present a framework for artificial intelligence-enhanced microscopy, integrating a hybrid light-field light-sheet microscope and deep learning-based volume reconstruction. In our approach, concomitantly acquired, high-resolution two-dimensional light-sheet images continuously serve as training data and validation for the convolutional neural network reconstructing the raw LFM data during extended volumetric time-lapse imaging experiments. Our network delivers high-quality three-dimensional reconstructions at video-rate throughput, which can be further refined based on the high-resolution light-sheet images. We demonstrate the capabilities of our approach by imaging medaka heart dynamics and zebrafish neural activity with volumetric imaging rates up to 100 Hz.

摘要

在生命科学的许多应用中,高速可视化大三维视场中的动态过程至关重要。光场显微镜(LFM)已成为快速体积图像采集的工具,但由于图像重建过程计算要求高且容易出现伪影,其有效吞吐量和在生物学中的广泛应用受到了阻碍。在这里,我们提出了一个人工智能增强显微镜的框架,集成了混合光场光片显微镜和基于深度学习的体积重建。在我们的方法中,同时获取的高分辨率二维光片图像连续作为训练数据和验证数据,用于在扩展的体积延时成像实验期间重建原始 LFM 数据的卷积神经网络。我们的网络以视频帧率的吞吐量提供高质量的三维重建,这些重建可以基于高分辨率光片图像进一步细化。我们通过以高达 100 Hz 的体积成像速率对斑马鱼心脏动力学和斑马鱼神经活动进行成像来证明我们方法的能力。

相似文献

[1]
Deep learning-enhanced light-field imaging with continuous validation.

Nat Methods. 2021-5

[2]
Real-time volumetric reconstruction of biological dynamics with light-field microscopy and deep learning.

Nat Methods. 2021-5

[3]
Instantaneous isotropic volumetric imaging of fast biological processes.

Nat Methods. 2019-4-29

[4]
Deep-learning on-chip light-sheet microscopy enabling video-rate volumetric imaging of dynamic biological specimens.

Lab Chip. 2021-9-14

[5]
Deep learning enables automated volumetric assessments of cardiac function in zebrafish.

Dis Model Mech. 2019-10-25

[6]
SPED Light Sheet Microscopy: Fast Mapping of Biological System Structure and Function.

Cell. 2015-12-17

[7]
A practical guide to deep-learning light-field microscopy for 3D imaging of biological dynamics.

STAR Protoc. 2023-3-17

[8]
Fast objective coupled planar illumination microscopy.

Nat Commun. 2019-10-2

[9]
High-contrast, synchronous volumetric imaging with selective volume illumination microscopy.

Commun Biol. 2020-2-14

[10]
Mimicry Embedding Facilitates Advanced Neural Network Training for Image-Based Pathogen Detection.

mSphere. 2020-9-9

引用本文的文献

[1]
Physics-driven self-supervised learning for fast high-resolution robust 3D reconstruction of light-field microscopy.

Nat Methods. 2025-5-12

[2]
Real-time and universal network for volumetric imaging from microscale to macroscale at high resolution.

Light Sci Appl. 2025-4-29

[3]
Ultrafast optical imaging techniques for exploring rapid neuronal dynamics.

Neurophotonics. 2025-1

[4]
Deep learning in light-matter interactions.

Nanophotonics. 2022-6-14

[5]
Deep learning methods for high-resolution microscale light field image reconstruction: a survey.

Front Bioeng Biotechnol. 2024-11-18

[6]
Volumetric voltage imaging of neuronal populations in the mouse brain by confocal light-field microscopy.

Nat Methods. 2024-11

[7]
Efficient high-resolution fluorescence projection imaging over an extended depth of field through optical hardware and deep learning optimizations.

Biomed Opt Express. 2024-5-20

[8]
Model-Based Explainable Deep Learning for Light-Field Microscopy Imaging.

IEEE Trans Image Process. 2024

[9]
Light-field flow cytometry for high-resolution, volumetric and multiparametric 3D single-cell analysis.

Nat Commun. 2024-3-4

[10]
Fast light-field 3D microscopy with out-of-distribution detection and adaptation through conditional normalizing flows.

Biomed Opt Express. 2024-1-30

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索