Department of Civil and Environmental Engineering, University of Tennessee Knoxville, Knoxville, TN, USA.
Department of Civil and Environmental Engineering, University of Tennessee Knoxville, Knoxville, TN, USA.
Environ Pollut. 2021 Sep 15;285:117266. doi: 10.1016/j.envpol.2021.117266. Epub 2021 Apr 29.
The current estimations of the burden of disease (BD) of PM exposure is still potentially biased by two factors: ignorance of heterogeneous vulnerabilities at diverse urbanization levels and reliance on the risk estimates from existing literature, usually from different locations. Our objectives are (1) to build up a data fusion framework to estimate the burden of PM exposure while evaluating local risks simultaneously and (2) to quantify their spatial heterogeneity, relationship to land-use characteristics, and derived uncertainties when calculating the disease burdens. The feature of this study is applying six local databases to extract PM exposure risk and the BD information, including the risks of death, cardiovascular disease (CVD), and respiratory disease (RD), and their spatial heterogeneities through our data fusion framework. We applied the developed framework to Tainan City in Taiwan as a use case estimated the risks by using 2006-2016 emergency department visit data, air quality monitoring data, and land-use characteristics and further estimated the BD caused by daily PM exposure in 2013. Our results found that the risks of CVD and RD in highly urbanized areas and death in rural areas could reach 1.20-1.57 times higher than average. Furthermore, we performed a sensitivity analysis to assess the uncertainty of BD estimations from utilizing different data sources, and the results showed that the uncertainty of the BD estimations could be contributed by different PM exposure data (20-32%) and risk values (0-86%), especially for highly urbanized areas. In conclusion, our approach for estimating BD based on local databases has the potential to be generalized to the developing and overpopulated countries and to support local air quality and health management plans.
目前,对 PM 暴露造成的疾病负担(BD)的估计仍然受到两个因素的影响:对不同城市化水平下异质脆弱性的无知,以及对现有文献中风险估计的依赖,而这些文献通常来自不同的地点。我们的目标是:(1) 建立一个数据融合框架来估计 PM 暴露造成的负担,同时评估当地风险;(2) 量化其空间异质性、与土地利用特征的关系,以及在计算疾病负担时衍生的不确定性。本研究的特点是应用六个本地数据库来提取 PM 暴露风险和 BD 信息,包括死亡、心血管疾病 (CVD) 和呼吸道疾病 (RD) 的风险,以及通过我们的数据融合框架来评估其空间异质性。我们将该框架应用于台湾台南市作为一个用例,使用 2006-2016 年的急诊就诊数据、空气质量监测数据和土地利用特征来估计风险,并进一步估计 2013 年每日 PM 暴露造成的 BD。我们的结果发现,高度城市化地区的 CVD 和 RD 风险以及农村地区的死亡风险可能比平均水平高 1.20-1.57 倍。此外,我们进行了敏感性分析,以评估利用不同数据源进行 BD 估计的不确定性,结果表明,BD 估计的不确定性可能来自不同的 PM 暴露数据(20-32%)和风险值(0-86%),特别是在高度城市化地区。总之,我们基于本地数据库估计 BD 的方法具有推广到发展中国家和人口稠密国家的潜力,并为当地空气质量和健康管理计划提供支持。