Suppr超能文献

基于超声导波和物理知识辅助机器学习的两级联合损伤识别策略。

Combined two-level damage identification strategy using ultrasonic guided waves and physical knowledge assisted machine learning.

机构信息

Department of Aerospace Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India.

Machine Intellection (MI), Institute for Infocomm Research (I(2)R), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #21-01 Connexis 138632, Singapore.

出版信息

Ultrasonics. 2021 Aug;115:106451. doi: 10.1016/j.ultras.2021.106451. Epub 2021 May 2.

Abstract

Structural Health Monitoring of composite structures is one of the significant challenges faced by the aerospace industry. A combined two-level damage identification viz damage detection and localization is performed in this paper for a composite panel using ultrasonic guided waves. A novel physical knowledge-assisted machine learning technique is proposed in which domain knowledge and expert supervision is utilized to assist the learning process. Two supervised learning-based convolutional neural networks are trained for damage detection (binary classification) and localization (multi-class classification) on an experimental benchmark dataset. The performance of the trained models is evaluated using loss curve, accuracy, confusion matrix, and receiver-operating characteristics curve. It is observed that incorporating physical knowledge helps networks perform better than a direct deep learning approach. In this work, a combined damage identification strategy is proposed for a real-time application. In this strategy, the damage detection model works in an outer-loop and predicts the state of the structure (undamaged or damaged), whereas an inner-loop predicts the location of the damage only if the outer-loop detects damage. It is seen that the proposed technique offers advantages in terms of accuracy (above 99% for both detection and localization), computational time (prediction time per signal in milliseconds), sensor optimization, in-situ monitoring, and robustness towards the noise.

摘要

复合材料结构的结构健康监测是航空航天工业面临的重大挑战之一。本文使用超声导波对复合材料板进行了两级联合损伤识别,即损伤检测和定位。提出了一种新的物理知识辅助机器学习技术,该技术利用领域知识和专家监督来辅助学习过程。针对损伤检测(二分类)和定位(多分类),在实验基准数据集上训练了两个基于监督学习的卷积神经网络。使用损失曲线、准确率、混淆矩阵和接收者操作特性曲线来评估训练模型的性能。结果表明,结合物理知识有助于网络的性能优于直接的深度学习方法。在这项工作中,提出了一种用于实时应用的联合损伤识别策略。在该策略中,损伤检测模型在外环中工作,并预测结构的状态(无损伤或损伤),而内环仅在外环检测到损伤时才预测损伤的位置。结果表明,所提出的技术在准确性(检测和定位均高于 99%)、计算时间(每个信号的预测时间以毫秒计)、传感器优化、原位监测和对噪声的鲁棒性方面具有优势。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验