Suppr超能文献

通过细菌芽孢的汗液激活萌发产生生物电。

Bioelectricity production from sweat-activated germination of bacterial endospores.

作者信息

Ryu Jihyun, Choi Seokheun

机构信息

Bioelectronics & Microsystems Laboratory, Department of Electrical & Computer Engineering, State University of New York at Binghamton, Binghamton, NY, 13902, USA.

Bioelectronics & Microsystems Laboratory, Department of Electrical & Computer Engineering, State University of New York at Binghamton, Binghamton, NY, 13902, USA; Center for Research in Advanced Sensing Technologies & Environmental Sustainability (CREATES), State University of New York at Binghamton, Binghamton, NY, 13902, USA.

出版信息

Biosens Bioelectron. 2021 Aug 15;186:113293. doi: 10.1016/j.bios.2021.113293. Epub 2021 May 3.

Abstract

A microbial fuel cell is created that uses a bacterium's natural ability to revive from dormancy to provide on-demand power for next-generation wearable applications. In adverse conditions, Bacillus subtilis responds by becoming endospores that serve as a dormant biocatalyst embedded in a skin-mountable paper-based microbial fuel cell. When activated by nutrient-rich human sweat, the germinating bacteria produce enough electricity to operate small devices, such as the calculator that we operated to test our methodology. The spore germination is artificially accelerated by nutritious germinants, which are pre-loaded on the skin-contacting bottom layer of the device, absorb the released sweat, and deliver a mixture of the dissolved germinants and sweat to the spores. When the skin-mountable device is applied to the arm of a sweating volunteer, it can generate a maximum power density of 16.6 μW/cm through bacterial respiratory activity. A potential risk of bacteria leakage from the device is minimized by packaging with a small pore size paper so that bacterial spores and germinated cells cannot pass through. When three serially connected devices are integrated into a single on-chip platform and energized by sweat, a significantly enhanced power density of 56.6 μW/cm is generated, powering an electrical calculator. After three weeks of dormant storage, the device exhibits no significant decrease in electrical output when activated by sweat. After use, the device is easily incinerated without risking bacterial infection. This work demonstrates the promising potential of the spore-forming microbial fuel cell as a disposable and long storage life power source for next-generation wearable applications.

摘要

一种微生物燃料电池被制造出来,它利用细菌从休眠中复苏的天然能力,为下一代可穿戴应用提供按需供电。在不利条件下,枯草芽孢杆菌会形成芽孢,这些芽孢作为一种休眠生物催化剂,嵌入到可贴在皮肤上的纸质微生物燃料电池中。当被富含营养的人体汗液激活时,发芽的细菌产生的电量足以驱动小型设备,比如我们用来测试方法的计算器。通过预先加载在设备与皮肤接触的底层上的营养发芽剂来人工加速孢子萌发,这些发芽剂吸收释放出的汗液,并将溶解的发芽剂和汗液的混合物输送给孢子。当将这种可贴在皮肤上的设备应用于出汗志愿者的手臂时,通过细菌呼吸活动,它能产生最大为16.6微瓦/平方厘米的功率密度。通过用小孔径纸张进行封装,将设备细菌泄漏的潜在风险降至最低,这样细菌孢子和已发芽的细胞就无法通过。当三个串联的设备集成到单个芯片平台并由汗液供电时,能产生显著增强的56.6微瓦/平方厘米的功率密度,为一个电子计算器供电。经过三周的休眠储存后,该设备在被汗液激活时,其电输出没有显著下降。使用后,该设备很容易焚烧,不会有细菌感染的风险。这项工作证明了形成芽孢的微生物燃料电池作为下一代可穿戴应用的一次性且储存寿命长的电源具有广阔的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验