Suppr超能文献

用于持久稳定血糖监测的革命性自供电传感机制:在微工程纸质平台上实现选择性和灵敏的细菌芽孢萌发

Revolutionary self-powered transducing mechanism for long-lasting and stable glucose monitoring: achieving selective and sensitive bacterial endospore germination in microengineered paper-based platforms.

作者信息

Gao Yang, Elhadad Anwar, Choi Seokheun

机构信息

Department of Electrical & Computer Engineering, Bioelectronics & Microsystems Laboratory, State University of New York at Binghamton, Binghamton, NY, 13902, USA.

Center for Research in Advanced Sensing Technologies & Environmental Sustainability, State University of New York at Binghamton, Binghamton, NY, 13902, USA.

出版信息

Microsyst Nanoeng. 2024 Dec 12;10(1):187. doi: 10.1038/s41378-024-00836-9.

Abstract

We introduce a groundbreaking proof-of-concept for a novel glucose monitoring transducing mechanism, marking the first demonstration of a spore-forming microbial whole-cell sensing platform. The approach uses selective and sensitive germination of Bacillus subtilis spores in response to glucose in potassium-rich bodily fluids such as sweat. As the rate of germination and the number of metabolically active germinating cells are directly proportional to glucose concentration, the electrogenic activity of these cells-manifested as electricity-serves as a self-powered transducing signal for glucose detection. Within a microengineered, paper-based microbial fuel cell (MFC), these electrical power outputs are measurable and can be visually displayed through a compact interface, providing real-time alerts. The dormant spores extend shelf-life, and the self-replicating bacteria ensure robustness. The MFC demonstrated a remarkable sensitivity of 2.246 µW·(log mM)·cm to glucose concentrations ranging from 0.2 to 10 mM, with a notably lower limit of detection at ~0.07 mM. The sensor exhibited exceptional selectivity, accurately detecting glucose even in the presence of various interferents. Comparative analyses revealed that, unlike conventional enzymatic biosensors whose performance degrades significantly through time even when inactive, the spore-based MFC is stable for extended periods and promptly regains functionality when needed. This preliminary investigation indicates that the spore-forming microbial whole-cell sensing strategy holds considerable promise for efficient diabetes management and can be extended toward noninvasive wearable monitoring, overcoming critical challenges of current technologies and paving the way for advanced biosensing applications.

摘要

我们介绍了一种用于新型葡萄糖监测转导机制的开创性概念验证,这标志着基于芽孢形成微生物的全细胞传感平台的首次展示。该方法利用枯草芽孢杆菌孢子在富含钾的体液(如汗液)中对葡萄糖的选择性和敏感性萌发。由于萌发速率和代谢活跃的萌发细胞数量与葡萄糖浓度成正比,这些细胞的电活性(表现为电流)作为葡萄糖检测的自供电转导信号。在一个微工程化的纸质微生物燃料电池(MFC)中,这些电能输出是可测量的,并且可以通过一个紧凑的界面进行可视化显示,提供实时警报。休眠孢子延长了保质期,自我复制的细菌确保了稳健性。该MFC对0.2至10 mM的葡萄糖浓度表现出2.246 μW·(log mM)·cm的显著灵敏度,检测下限约为0.07 mM,明显更低。该传感器表现出卓越的选择性,即使在存在各种干扰物的情况下也能准确检测葡萄糖。对比分析表明,与传统酶生物传感器不同,即使在不活动时其性能也会随时间显著下降,基于孢子的MFC在很长一段时间内都是稳定的,并且在需要时能迅速恢复功能。这项初步研究表明,基于芽孢形成微生物的全细胞传感策略在高效糖尿病管理方面具有巨大潜力,并且可以扩展到无创可穿戴监测,克服当前技术的关键挑战,为先进的生物传感应用铺平道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9351/11634959/bbe1e46fca2c/41378_2024_836_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验