Suppr超能文献

抑制芽孢杆菌属孢子萌发的化合物作用分析。

Analysis of the action of compounds that inhibit the germination of spores of Bacillus species.

作者信息

Cortezzo D E, Setlow B, Setlow P

机构信息

Department of Molecular, Microbial and Structural Biology, University of Connecticut Health Center, Farmington, CT 06032-3305, USA.

出版信息

J Appl Microbiol. 2004;96(4):725-41. doi: 10.1111/j.1365-2672.2004.02196.x.

Abstract

AIMS

To determine the mechanism of action of inhibitors of the germination of spores of Bacillus species, and where these inhibitors act in the germination process.

METHODS AND RESULTS

Spores of various Bacillus species are significant agents of food spoilage and food-borne disease, and inhibition of spore germination is a potential means of reducing such problems. Germination of the following spores was studied: (i) wild-type B. subtilis spores; (ii) B. subtilis spores with a nutrient receptor variant allowing recognition of a novel germinant; (iii) B. subtilis spores with elevated levels of either the variant nutrient receptor or its wild-type allele; (iv) B. subtilis spores lacking all nutrient receptors and (v) wild-type B. megaterium spores. Spores were germinated with a variety of nutrient germinants, Ca2+-dipicolinic acid (DPA) and dodecylamine for B. subtilis spores, and KBr for B. megaterium spores. Compounds tested as inhibitors of germination included alkyl alcohols, a phenol derivative, a fatty acid, ion channel blockers, enzyme inhibitors and several other compounds. Assays used to assess rates of spore germination monitored: (i) the fall in optical density at 600 nm of spore suspensions; (ii) the release of the dormant spore's large depot of DPA; (iii) hydrolysis of the dormant spore's peptidoglycan cortex and (iv) generation of CFU from spores that lacked all nutrient receptors. The results with B. subtilis spores allowed the assignment of inhibitory compounds into two general groups: (i) those that inhibited the action of, or response to, one nutrient receptor and (ii) those that blocked the action of, or response to, several or all of the nutrient receptors. Some of the compounds in groups 1 and 2 also blocked action of at least one cortex lytic enzyme, however, this does not appear to be the primary site of their action in inhibiting spore germination. The inhibitors had rather different effects on germination of B. subtilis spores with nutrients or non-nutrients, consistent with previous work indicating that germination of B. subtilis spores by non-nutrients does not involve the spore's nutrient receptors. In particular, none of the compounds tested inhibited spore germination with dodecylamine, and only three compounds inhibited Ca2+-DPA germination. In contrast, all compounds had very similar effects on the germination of B. megaterium spores with either glucose or KBr. The effects of the inhibitors tested on spores of both Bacillus species were largely reversible.

CONCLUSIONS

This work indicates that inhibitors of B. subtilis spore germination fall into two classes: (i) compounds (most alkyl alcohols, N-ethylmaleimide, nifedipine, phenols, potassium sorbate) that inhibit the action of, or response to, primarily one nutrient receptor and (ii) compounds [amiloride, HgCl2, octanoic acid, octanol, phenylmethylsulphonylfluoride (PMSF), quinine, tetracaine, tosyl-l-arginine methyl ester, trifluoperazine] that inhibit the action of, or response to, several nutrient receptors. Action of these inhibitors, is reversible. The similar effects of inhibitors on B. megaterium spore germination by glucose or KBr indicate that inorganic salts likely trigger germination by activating one or more nutrient receptors. The lack of effect of all inhibitors on dodecylamine germination suggests that this compound stimulates germination by creating channels in the spore's inner membrane allowing DPA release.

SIGNIFICANCE AND IMPACT OF THE STUDY

This work provides new insight into the steps in spore germination that are inhibited by various chemicals, and the mechanism of action of these inhibitors. The work also provides new insights into the process of spore germination itself.

摘要

目的

确定芽孢杆菌属孢子萌发抑制剂的作用机制,以及这些抑制剂在萌发过程中的作用位点。

方法与结果

多种芽孢杆菌属的孢子是食物腐败和食源性疾病的重要致病因子,抑制孢子萌发是减少此类问题的一种潜在手段。研究了以下几种孢子的萌发情况:(i)野生型枯草芽孢杆菌孢子;(ii)具有营养受体变体的枯草芽孢杆菌孢子,该变体可识别新型萌发剂;(iii)变体营养受体或其野生型等位基因水平升高的枯草芽孢杆菌孢子;(iv)缺乏所有营养受体的枯草芽孢杆菌孢子;(v)巨大芽孢杆菌野生型孢子。用多种营养萌发剂使孢子萌发,枯草芽孢杆菌孢子用Ca2 + -二吡啶甲酸(DPA)和十二烷基胺,巨大芽孢杆菌孢子用KBr。作为萌发抑制剂测试的化合物包括烷基醇、一种酚类衍生物、一种脂肪酸、离子通道阻滞剂、酶抑制剂和其他几种化合物。用于评估孢子萌发速率的测定方法监测:(i)孢子悬液在600 nm处光密度的下降;(ii)休眠孢子中大量DPA的释放;(iii)休眠孢子肽聚糖皮层的水解;(iv)缺乏所有营养受体的孢子产生的菌落形成单位(CFU)。枯草芽孢杆菌孢子的实验结果可将抑制性化合物分为两大类:(i)那些抑制一种营养受体的作用或对其反应的化合物;(ii)那些阻断几种或所有营养受体的作用或对其反应的化合物。第1组和第2组中的一些化合物也阻断了至少一种皮层裂解酶的作用,然而,这似乎不是它们抑制孢子萌发的主要作用位点。这些抑制剂对有营养或无营养的枯草芽孢杆菌孢子萌发的影响差异较大,这与之前的研究结果一致,即无营养物质诱导枯草芽孢杆菌孢子萌发不涉及孢子的营养受体。特别地,所测试的化合物中没有一种能抑制十二烷基胺诱导的孢子萌发,只有三种化合物能抑制Ca2 + -DPA诱导的萌发。相反,所有化合物对葡萄糖或KBr诱导的巨大芽孢杆菌孢子萌发的影响非常相似。所测试的抑制剂对两种芽孢杆菌属孢子萌发的影响在很大程度上是可逆的。

结论

这项研究表明,枯草芽孢杆菌孢子萌发抑制剂分为两类:(i)主要抑制一种营养受体的作用或对其反应的化合物(大多数烷基醇、N-乙基马来酰胺、硝苯地平、酚类、山梨酸钾);(ii)抑制几种营养受体的作用或对其反应的化合物[氨氯地平、HgCl2、辛酸、辛醇、苯甲基磺酰氟(PMSF)、奎宁、丁卡因、甲苯磺酰-L-精氨酸甲酯、三氟拉嗪]。这些抑制剂的作用是可逆的。抑制剂对葡萄糖或KBr诱导的巨大芽孢杆菌孢子萌发具有相似的影响,这表明无机盐可能通过激活一种或多种营养受体来触发萌发。所有抑制剂对十二烷基胺诱导的孢子萌发均无影响,这表明该化合物通过在孢子内膜上形成通道允许DPA释放来刺激萌发。

研究的意义和影响

这项工作为各种化学物质抑制孢子萌发的步骤以及这些抑制剂的作用机制提供了新的见解。该工作也为孢子萌发过程本身提供了新的见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验