Suppr超能文献

使用完整蛋白质MRM的高通量蛋白质修饰定量分析及其在人ENGase抑制剂筛选中的应用。

High-throughput protein modification quantitation analysis using intact protein MRM and its application on hENGase inhibitor screening.

作者信息

Tao Dingyin, Xu Miao, Farkhondeh Atena, Burns Andrew P, Rodems Steven, Might Matthew, Zheng Wei, LeClair Christopher A

机构信息

National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA.

National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA.

出版信息

Talanta. 2021 Aug 15;231:122384. doi: 10.1016/j.talanta.2021.122384. Epub 2021 Apr 1.

Abstract

Proteins are widely used as drug targets, enzyme substrates, and biomarkers for numerous diseases. The emerging demand for proteins quantitation has been increasing in multiple fields. Currently, there is still a big gap for high-throughput protein quantitation at intact protein level using label-free method. Here we choose ribonuclease B (RNB) as a model, which is the substrate for human endo-β-N-acetylglucosaminidase (hENGase), a promising drug target for the treatment of N-Glycanase deficiency. Intact proteinlevel multiple reaction monitoring (MRM) methods were initally developed and optimized to quantify RNB and deglycosylated RNB (RNB-deg), with the S/N ratio improved by nearly 20-fold compared to the traditional full MS scan methods. To further increase the throughput making it possible for hENGase inhibitors screen, the protein MRM methods were introduced to the RapidFire-MS/MS system, achieving at least 12-fold throughput improvement. This assay was further optimized into 384-well plate format for compound screening with S/B ratio >37-fold and Z' factor >0.7 that is suitable for high-throughput screening of compound collections with a speed of 2 h per 384-well plate and an ability to screen over 3000 compounds per day at a single concentration dose. This 384-well plate based automated SPE-MS/MS assay is efficient and robust for compound screening and the assay format has a wide applicability to protein targets for other disease models.

摘要

蛋白质作为众多疾病的药物靶点、酶底物和生物标志物被广泛应用。多个领域对蛋白质定量分析的需求不断增加。目前,在完整蛋白质水平上使用无标记方法进行高通量蛋白质定量分析仍存在很大差距。在此,我们选择核糖核酸酶B(RNB)作为模型,它是人类内切β-N-乙酰氨基葡萄糖苷酶(hENGase)的底物,hENGase是治疗N-聚糖酶缺乏症的一个有前景的药物靶点。最初开发并优化了完整蛋白质水平的多反应监测(MRM)方法,以定量RNB和去糖基化RNB(RNB-deg),与传统的全质谱扫描方法相比,信噪比提高了近20倍。为了进一步提高通量,使hENGase抑制剂筛选成为可能,将蛋白质MRM方法引入RapidFire-MS/MS系统,通量提高了至少12倍。该分析方法进一步优化为384孔板形式用于化合物筛选,信号本底比>37倍,Z'因子>0.7,适用于高通量筛选化合物库,每384孔板的分析速度为2小时,能够在单浓度剂量下每天筛选超过3000种化合物。这种基于384孔板的自动化固相萃取-质谱/质谱分析方法对于化合物筛选高效且稳健,并且该分析形式对其他疾病模型的蛋白质靶点具有广泛的适用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/053c/8215893/a30920283fb7/nihms-1690504-f0001.jpg

相似文献

本文引用的文献

7
Top-Down Proteomics: Ready for Prime Time?自上而下蛋白质组学:准备好迎接黄金时代了吗?
Anal Chem. 2018 Jan 2;90(1):110-127. doi: 10.1021/acs.analchem.7b04747. Epub 2017 Dec 15.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验