School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India; Department of Chemistry & Centre for Bio-Nanotechnology, CCS Haryana Agricultural University, Hisar, 125004, India.
Environ Res. 2021 Oct;201:111218. doi: 10.1016/j.envres.2021.111218. Epub 2021 May 7.
Environmental (pH, temperature ionic strength, cations, anions) and process (pyrolysis temperature, particle size, adsorbent dosage, initial concentration) parameters were evaluated for ciprofloxacin and acetaminophen sorption onto a series of sustainable banana peel biochars. Ciprofloxacin and acetaminophen were chosen as model pharmaceuticals for removal owing to their worldwide presence in aquatic systems. After pyrolytic preparation from 450 to 750 °C, the biochars were qualitatively and quantitatively characterized by physicochemical, morphological, mineralogical and elemental analyses. Batch sorption studies were employed to evaluate the pH effects from 2 to 10, biochar pyrolysis temperatures (450, 550, 650, and 750 °C), particle sizes (30-50, 50-100, 100-150 BSS mesh), adsorbent dosages (0.5, 1.0, 2.0 g/L), adsorbate concentrations (0.5-200 ppm) and uptake temperatures (10, 25, 40 °C) on sorption efficiency. Maximum pharmaceutical sorption is achieved by the biochar prepared at 750 °C. Sorption rate increased with decrease in biochar particle size from 30 to 50 to 100-150 BSS mesh. Relationships between biochar properties and their sorptive potential showed positive correlations with surface area, total pore volume, %C, %ash and C/N molar ratios. Sorption data was modelled using different isotherm models and both kinetic and thermodynamic equations. Maximum Langmuir capacities of ciprofloxacin and acetaminophen on BPBC750 were 23.3 and 40.8 mg/g at 10 °C; 21.0 and 49.93 mg/g at 25 °C and 20.42 and 57.3 mg/g at 45 °C, respectively. Langmuir isotherm fittings and thermodynamic parameters confirmed the exothermic sorption (for ciprofloxacin) and endothermic sorption (for acetaminophen). The role of ionic strength, cations and anions on pharmaceuticals sorption were evaluated. H-bonding, π-π-interactions and pore diffusion were major contributors to pharmaceutical sorption.
环境(pH 值、温度、离子强度、阳离子、阴离子)和工艺(热解温度、颗粒大小、吸附剂用量、初始浓度)参数被评估用于一系列可持续香蕉皮生物炭对环丙沙星和扑热息痛的吸附。由于环丙沙星和扑热息痛在水生系统中广泛存在,选择它们作为去除的模型药物。在 450 至 750°C 的热解制备后,通过物理化学、形态学、矿物学和元素分析对生物炭进行定性和定量表征。采用批量吸附研究来评估 pH 值从 2 到 10 的影响、生物炭热解温度(450、550、650 和 750°C)、颗粒大小(30-50、50-100、100-150 BSS 目)、吸附剂用量(0.5、1.0、2.0 g/L)、吸附物浓度(0.5-200 ppm)和吸附温度(10、25、40°C)对吸附效率的影响。在 750°C 下制备的生物炭实现了最大的药物吸附。吸附速率随着生物炭颗粒尺寸从 30 至 50 至 100-150 BSS 目而增加。生物炭性质与其吸附潜力之间的关系显示出与表面积、总孔体积、%C、%灰分和 C/N 摩尔比呈正相关。使用不同的等温线模型和动力学和热力学方程对吸附数据进行建模。在 10°C 时,BPBC750 上环丙沙星和扑热息痛的最大朗缪尔容量分别为 23.3 和 40.8 mg/g;在 25°C 时分别为 21.0 和 49.93 mg/g;在 45°C 时分别为 20.42 和 57.3 mg/g。朗缪尔等温线拟合和热力学参数证实了吸附的放热性(对于环丙沙星)和吸热性(对于扑热息痛)。评估了离子强度、阳离子和阴离子对药物吸附的作用。氢键、π-π 相互作用和孔扩散是药物吸附的主要贡献者。