Suppr超能文献

运动校正冠状动脉 NaF-PET-MR 协同图像配准评估。

Evaluation of synergistic image registration for motion-corrected coronary NaF-PET-MR.

机构信息

Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany.

Klinik für Kardiologie, Charité Campus Benjamin Franklin, Universitätsmedizin Berlin, Berlin, Germany.

出版信息

Philos Trans A Math Phys Eng Sci. 2021 Jun 28;379(2200):20200202. doi: 10.1098/rsta.2020.0202. Epub 2021 May 10.

Abstract

Coronary artery disease (CAD) is caused by the formation of plaques in the coronary arteries and is one of the most common cardiovascular diseases. NaF-PET can be used to assess plaque composition, which could be important for therapy planning. One of the main challenges of NaF-PET is cardiac and respiratory motion which can strongly impair diagnostic accuracy. In this study, we investigated the use of a synergistic image registration approach which combined motion-resolved MR and PET data to estimate cardiac and respiratory motion. This motion estimation could then be used to improve the NaF-PET image quality. The approach was evaluated with numerical simulations and scans of patients suffering from CAD. In numerical simulations, it was shown, that combining MR and PET information can improve the accuracy of motion estimation by more than 15%. For the scans, the synergistic image registration led to an improvement in uptake visualization. This is the first study to assess the benefit of combining MR and NaF-PET for cardiac and respiratory motion estimation. Further patient evaluation is required to fully evaluate the potential of this approach. This article is part of the theme issue 'Synergistic tomographic image reconstruction: part 1'.

摘要

冠状动脉疾病 (CAD) 是由冠状动脉中斑块的形成引起的,是最常见的心血管疾病之一。NaF-PET 可用于评估斑块成分,这对于治疗计划可能很重要。NaF-PET 的主要挑战之一是心脏和呼吸运动,这会强烈影响诊断准确性。在这项研究中,我们研究了使用协同图像配准方法的情况,该方法结合了运动分辨的 MR 和 PET 数据来估计心脏和呼吸运动。然后可以使用这种运动估计来提高 NaF-PET 图像质量。该方法通过数值模拟和患有 CAD 的患者的扫描进行了评估。在数值模拟中,结果表明,结合 MR 和 PET 信息可以将运动估计的准确性提高 15%以上。对于扫描,协同图像配准导致摄取可视化得到改善。这是第一项评估结合 MR 和 NaF-PET 进行心脏和呼吸运动估计的益处的研究。需要进一步的患者评估才能充分评估该方法的潜力。本文是主题为“协同断层图像重建:第 1 部分”的一部分。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1819/8107649/e82cd3bb2c05/rsta20200202f02.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验