Suppr超能文献

用于通过扩散加权图像识别急性缺血性中风的深度对称三维卷积神经网络。

Deep symmetric three-dimensional convolutional neural networks for identifying acute ischemic stroke via diffusion-weighted images.

作者信息

Cui Liyuan, Han Shanhua, Qi Shouliang, Duan Yang, Kang Yan, Luo Yu

机构信息

College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China.

Radiology Department, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China.

出版信息

J Xray Sci Technol. 2021;29(4):551-566. doi: 10.3233/XST-210861.

Abstract

BACKGROUND

Acute ischemic stroke (AIS) results in high morbidity, disability, and mortality. Early and automatic diagnosis of AIS can help clinicians administer the appropriate interventions.

OBJECTIVE

To develop a deep symmetric 3D convolutional neural network (DeepSym-3D-CNN) for automated AIS diagnosis via diffusion-weighted imaging (DWI) images.

METHODS

This study includes 190 study subjects (97 AIS and 93 Non-AIS) by collecting both DWI and Apparent Diffusion Coefficient (ADC) images. 3D DWI brain images are split into left and right hemispheres and input into two paths. A map with 125×253×14×12 features is extracted by each path of Inception Modules. After the features computed from two paths are subtracted through L-2 normalization, four multi-scale convolution layers produce the final predation. Three comparative models using DWI images including MedicalNet with transfer learning, Simple DeepSym-3D-CNN (each 3D Inception Module is replaced by a simple 3D-CNN layer), and L-1 DeepSym-3D-CNN (L-2 normalization is replaced by L-1 normalization) are constructed. Moreover, using ADC images and the combination of DWI and ADC images as inputs, the performance of DeepSym-3D-CNN is also investigated. Performance levels of all three models are evaluated by 5-fold cross-validation and the values of area under ROC curve (AUC) are compared by DeLong's test.

RESULTS

DeepSym-3D-CNN achieves an accuracy of 0.850 and an AUC of 0.864. DeLong's test of AUC values demonstrates that DeepSym-3D-CNN significantly outperforms other comparative models (p < 0.05). The highlighted regions in the feature maps of DeepSym-3D-CNN spatially match with AIS lesions. Meanwhile, DeepSym-3D-CNN using DWI images presents the significant higher AUC than that either using ADC images or using DWI-ADC images based on DeLong's test (p < 0.05).

CONCLUSIONS

DeepSym-3D-CNN is a potential method for automatically identifying AIS via DWI images and can be extended to other diseases with asymmetric lesions.

摘要

背景

急性缺血性卒中(AIS)会导致高发病率、残疾率和死亡率。AIS的早期自动诊断有助于临床医生进行适当的干预。

目的

通过扩散加权成像(DWI)图像开发一种用于AIS自动诊断的深度对称三维卷积神经网络(DeepSym-3D-CNN)。

方法

本研究通过收集DWI和表观扩散系数(ADC)图像纳入了190名研究对象(97例AIS和93例非AIS)。三维DWI脑图像被分为左右半球并输入两条路径。每条Inception模块路径提取出一个具有125×253×14×12特征的图谱。在通过L-2归一化对两条路径计算出的特征进行相减后,四个多尺度卷积层产生最终预测结果。构建了三种使用DWI图像的对比模型,包括具有迁移学习的MedicalNet、简单深度对称三维卷积神经网络(Simple DeepSym-3D-CNN,每个三维Inception模块被一个简单的三维卷积神经网络层替代)和L-1深度对称三维卷积神经网络(L-1 DeepSym-3D-CNN,L-2归一化被L-1归一化替代)。此外,以ADC图像以及DWI和ADC图像的组合作为输入,还研究了DeepSym-3D-CNN的性能。所有三种模型的性能水平通过五折交叉验证进行评估,并通过德龙检验比较ROC曲线下面积(AUC)值。

结果

DeepSym-3D-CNN的准确率达到0.850,AUC为0.864。AUC值的德龙检验表明,DeepSym-3D-CNN显著优于其他对比模型(p<0.05)。DeepSym-3D-CNN特征图谱中的突出区域在空间上与AIS病变相匹配。同时,基于德龙检验,使用DWI图像的DeepSym-3D-CNN的AUC显著高于使用ADC图像或DWI-ADC图像的情况(p<0.05)。

结论

DeepSym-3D-CNN是一种通过DWI图像自动识别AIS的潜在方法,并且可以扩展到其他具有不对称病变的疾病。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验