Wittrup Emily, Reavey-Cantwell John, Pandey Aditya S, Rivet Ii Dennis J, Najarian Kayvan
Gilbert S. Omenn Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA.
Department of Neurosurgery, Virginia Commonwealth University, Richmond, VA, USA.
BMC Med Imaging. 2025 Aug 14;25(1):329. doi: 10.1186/s12880-025-01864-1.
Despite the potential clinical utility for acute ischemic stroke patients, predicting short-term operational outcomes like length of stay (LOS) and long-term functional outcomes such as the 90-day Modified Rankin Scale (mRS) remain a challenge, with limited current clinical guidance on expected patient trajectories. Machine learning approaches have increasingly aimed to bridge this gap, often utilizing admission-based clinical features; yet, the integration of imaging biomarkers remains underexplored, especially regarding whole 2.5D image fusion using advanced deep learning techniques.
This study introduces a novel method leveraging autoencoders to integrate 2.5D diffusion weighted imaging (DWI) with clinical features for refined outcome prediction.
Results on a comprehensive dataset of AIS patients demonstrate that our autoencoder-based method has comparable performance to traditional convolutional neural networks image fusion methods and clinical data alone (LOS > 8 days: AUC 0.817, AUPRC 0.573, F1-Score 0.552; 90-day mRS > 2: AUC 0.754, AUPRC 0.685, F1-Score 0.626).
This novel integration of imaging and clinical data for post-intervention stroke prognosis has numerous computational and operational advantages over traditional image fusion methods. While further validation of the presented models is necessary before adoption, this approach aims to enhance personalized patient management and operational decision-making in healthcare settings.
Not applicable.
尽管对急性缺血性中风患者具有潜在的临床应用价值,但预测短期手术结果(如住院时间)和长期功能结果(如90天改良Rankin量表)仍然是一项挑战,目前关于预期患者病程的临床指导有限。机器学习方法越来越多地旨在弥合这一差距,通常利用基于入院时的临床特征;然而,成像生物标志物的整合仍未得到充分探索,尤其是在使用先进深度学习技术进行全2.5D图像融合方面。
本研究引入了一种利用自动编码器将2.5D扩散加权成像与临床特征相结合的新方法,以进行精确的结果预测。
在一个全面的急性缺血性中风患者数据集上的结果表明,我们基于自动编码器的方法与传统卷积神经网络图像融合方法和单独的临床数据具有相当的性能(住院时间>8天:AUC 0.817,AUPRC 0.573,F1分数0.552;90天改良Rankin量表>2:AUC 0.754,AUPRC 0.685,F1分数0.626)。
这种用于干预后中风预后的成像和临床数据的新整合相对于传统图像融合方法具有许多计算和操作优势。虽然在采用之前有必要对所提出的模型进行进一步验证,但这种方法旨在加强医疗保健环境中的个性化患者管理和操作决策。
不适用。