Suppr超能文献

K-12阶段机器学习教学的可视化工具:一项为期十年的系统映射研究。

Visual tools for teaching machine learning in K-12: A ten-year systematic mapping.

作者信息

Gresse von Wangenheim Christiane, Hauck Jean C R, Pacheco Fernando S, Bertonceli Bueno Matheus F

机构信息

Department of Informatics and Statistics, Federal University of Santa Catarina, Florianópolis, Brazil.

Department of Electronics, Federal Institute of Santa Catarina, Florianópolis, Brazil.

出版信息

Educ Inf Technol (Dordr). 2021;26(5):5733-5778. doi: 10.1007/s10639-021-10570-8. Epub 2021 May 1.

Abstract

Teaching Machine Learning in school helps students to be better prepared for a society rapidly changing due to the impact of Artificial Intelligence. This requires age-appropriate tools that allow students to develop a comprehensive understanding of Machine Learning in order to become creators of smart solutions. Following the trend of visual languages for introducing algorithms and programming in K-12, we present a ten-year systematic mapping of emerging visual tools that support the teaching of Machine Learning at this educational stage and analyze the tools concerning their educational characteristics, support for the development of ML models as well as their deployment and how the tools have been developed and evaluated. As a result, we encountered 16 tools targeting students mostly as part of short duration extracurricular activities. Tools mainly support the interactive development of ML models for image recognition tasks using supervised learning covering basic steps of the ML process. Being integrated into popular block-based programming languages (primarily Scratch and App Inventor), they also support the deployment of the created ML models as part of games or mobile applications. Findings indicate that the tools can effectively leverage students' understanding of Machine Learning, however, further studies regarding the design of the tools concerning educational aspects are required to better guide their effective adoption in schools and their enhancement to support the learning process more comprehensively.

摘要

在学校教授机器学习有助于学生为因人工智能影响而迅速变化的社会做好更好的准备。这需要适合学生年龄的工具,使学生能够全面理解机器学习,从而成为智能解决方案的创造者。顺应在K-12阶段引入算法和编程的视觉语言趋势,我们对支持该教育阶段机器学习教学的新兴视觉工具进行了为期十年的系统映射,并分析了这些工具的教育特性、对机器学习模型开发及其部署的支持,以及这些工具是如何开发和评估的。结果,我们发现了16种主要针对学生的工具,这些工具大多作为短期课外活动的一部分。这些工具主要支持使用监督学习进行图像识别任务的机器学习模型的交互式开发,涵盖机器学习过程的基本步骤。它们被集成到流行的基于块的编程语言(主要是Scratch和App Inventor)中,还支持将创建的机器学习模型作为游戏或移动应用程序的一部分进行部署。研究结果表明,这些工具可以有效地利用学生对机器学习的理解,然而,需要进一步开展关于工具教育方面设计的研究,以更好地指导它们在学校中的有效应用,并对其进行改进,以更全面地支持学习过程。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac5c/8087535/9f9b32731ab1/10639_2021_10570_Fig1_HTML.jpg

相似文献

1
Visual tools for teaching machine learning in K-12: A ten-year systematic mapping.
Educ Inf Technol (Dordr). 2021;26(5):5733-5778. doi: 10.1007/s10639-021-10570-8. Epub 2021 May 1.
2
Smartpath: a platform for teaching glomerulopathies using machine learning.
BMC Med Educ. 2021 Apr 29;21(1):248. doi: 10.1186/s12909-021-02680-1.
3
Otolaryngology--head and neck surgery in undergraduate medical education: advances and innovations.
Laryngoscope. 2015 Feb;125 Suppl 2:S1-14. doi: 10.1002/lary.24875. Epub 2014 Aug 14.
5
Student and educator experiences of maternal-child simulation-based learning: a systematic review of qualitative evidence protocol.
JBI Database System Rev Implement Rep. 2015 Jan;13(1):14-26. doi: 10.11124/jbisrir-2015-1694.
7
New tools for learning.
Turk J Pediatr. 1999;41 Suppl:127-35.
9
The effectiveness of internet-based e-learning on clinician behavior and patient outcomes: a systematic review protocol.
JBI Database System Rev Implement Rep. 2015 Jan;13(1):52-64. doi: 10.11124/jbisrir-2015-1919.
10
Peering Into the Black Box of Artificial Intelligence: Evaluation Metrics of Machine Learning Methods.
AJR Am J Roentgenol. 2019 Jan;212(1):38-43. doi: 10.2214/AJR.18.20224. Epub 2018 Oct 17.

引用本文的文献

1
A conceptual ethical framework to preserve natural human presence in the use of AI systems in education.
Front Artif Intell. 2025 Jan 21;7:1377938. doi: 10.3389/frai.2024.1377938. eCollection 2024.
2
Code-Free Machine Learning Approach for EVO-ICL Vault Prediction: A Retrospective Two-Center Study.
Transl Vis Sci Technol. 2024 Apr 2;13(4):4. doi: 10.1167/tvst.13.4.4.

本文引用的文献

2
Google Search as an Additional Source in Systematic Reviews.
Sci Eng Ethics. 2018 Apr;24(2):809-810. doi: 10.1007/s11948-017-0010-4. Epub 2017 Dec 16.
3
Visualizing Dataflow Graphs of Deep Learning Models in TensorFlow.
IEEE Trans Vis Comput Graph. 2018 Jan;24(1):1-12. doi: 10.1109/TVCG.2017.2744878. Epub 2017 Aug 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验