Suppr超能文献

智能路径:一个使用机器学习教授肾小球疾病的平台。

Smartpath: a platform for teaching glomerulopathies using machine learning.

作者信息

Aldeman Nayze Lucena Sangreman, de Sá Urtiga Aita Keylla Maria, Machado Vinícius Ponte, da Mata Sousa Luiz Claudio Demes, Coelho Antonio Gilberto Borges, da Silva Adalberto Socorro, da Silva Mendes Ana Paula, de Oliveira Neres Francisco Jair, do Monte Semíramis Jamil Hadad

机构信息

Department of Specialized Medicine, Federal University of Piauí, Teresina, PI, Brazil.

Open and distance education center and computer scientist of the Immunogenetics and Molecular Biology Laboratory (LIB - UFPI), Federal University of Piauí, Teresina, PI, Brazil.

出版信息

BMC Med Educ. 2021 Apr 29;21(1):248. doi: 10.1186/s12909-021-02680-1.

Abstract

BACKGROUND

With the emergence of the new coronavirus pandemic (COVID-19), distance learning, especially that mediated by information and digital communication technologies, has been adopted in all areas of knowledge and at all levels, including medical education. Imminently practical areas, such as pathology, have made traditional teaching based on conventional microscopy more flexible through the synergies of computational tools and image digitization, not only to improve teaching-learning but also to offer alternatives to repetitive and exhaustive histopathological analyzes. In this context, machine learning algorithms capable of recognizing histological patterns in kidney biopsy slides have been developed and validated with a view to building computational models capable of accurately identifying renal pathologies. In practice, the use of such algorithms can contribute to the universalization of teaching, allowing quality training even in regions where there is a lack of good nephropathologists. The purpose of this work is to describe and test the functionality of SmartPath, a tool to support teaching of glomerulopathies using machine learning. The training for knowledge acquisition was performed automatically by machine learning methods using the J48 algorithm to create a computational model of an appropriate decision tree.

RESULTS

An intelligent system, SmartPath, was developed as a complementary remote tool in the teaching-learning process for pathology teachers and their students (undergraduate and graduate students), showing 89,47% accuracy using machine learning algorithms based on decision trees.

CONCLUSION

This artificial intelligence system can assist in teaching renal pathology to increase the training capacity of new medical professionals in this area.

摘要

背景

随着新型冠状病毒大流行(COVID-19)的出现,远程学习,尤其是由信息和数字通信技术介导的远程学习,已在所有知识领域和各级教育中得到采用,包括医学教育。像病理学这样急需实践的领域,通过计算工具与图像数字化的协同作用,使基于传统显微镜的传统教学更加灵活,不仅提高了教学效果,还为重复性和详尽的组织病理学分析提供了替代方法。在这种背景下,已经开发并验证了能够识别肾活检切片组织学模式的机器学习算法,旨在构建能够准确识别肾脏疾病的计算模型。实际上,使用此类算法有助于教学的普及,即使在缺乏优秀肾病病理学家的地区也能提供高质量的培训。这项工作的目的是描述并测试SmartPath的功能,这是一种使用机器学习支持肾小球疾病教学的工具。通过使用J48算法的机器学习方法自动进行知识获取培训,以创建合适的决策树计算模型。

结果

开发了一个智能系统SmartPath,作为病理学教师及其学生(本科生和研究生)教学过程中的辅助远程工具,基于决策树的机器学习算法显示其准确率为89.47%。

结论

这个人工智能系统可以协助肾脏病理学教学,提高该领域新医学专业人员的培训能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c92d/8086352/22c17b8249d4/12909_2021_2680_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验