Department of Ophthalmology, Kim's Eye Hospital, Konyang University College of Medicine, Seoul, South Korea.
Department of Refractive Surgery, B&VIIT Eye Center, Seoul, South Korea.
Transl Vis Sci Technol. 2024 Apr 2;13(4):4. doi: 10.1167/tvst.13.4.4.
Establishing a development environment for machine learning is difficult for medical researchers because learning to code is a major barrier. This study aimed to improve the accuracy of a postoperative vault value prediction model for implantable collamer lens (ICL) sizing using machine learning without coding experience.
We used Orange data mining, a recently developed open-source, code-free machine learning tool. This study included eye-pair data from 294 patients from the B&VIIT Eye Center and 26 patients from Kim's Eye Hospital. The model was developed using OCULUS Pentacam data from the B&VIIT Eye Center and was internally evaluated through 10-fold cross-validation. External validation was performed using data from Kim's Eye Hospital.
The machine learning model was successfully trained using the data collected without coding. The random forest showed mean absolute errors of 124.8 µm and 152.4 µm for the internal 10-fold cross-validation and the external validation, respectively. For high vault prediction (>750 µm), the random forest showed areas under the curve of 0.725 and 0.760 for the internal and external validation datasets, respectively. The developed model performed better than the classic statistical regression models and the Google no-code platform.
Applying a no-code machine learning tool to our ICL implantation datasets showed a more accurate prediction of the postoperative vault than the classic regression and Google no-code models.
Because of significant bias in measurements and surgery between clinics, the no-code development of a customized machine learning nomogram will improve the accuracy of ICL implantation.
对于医学研究人员来说,建立机器学习的开发环境具有一定难度,因为学习编码是一个主要障碍。本研究旨在提高使用机器学习且无需编码经验对植入式隐形眼镜 (ICL) 型号选择的术后拱高值预测模型的准确性。
我们使用了 Orange 数据挖掘,这是一种新开发的开源、无代码机器学习工具。本研究包括来自 B&VIIT 眼科中心的 294 对患者和 Kim's 眼科医院的 26 位患者的眼对数据。该模型使用 B&VIIT 眼科中心的 OCULUS Pentacam 数据进行开发,并通过 10 倍交叉验证进行内部评估。使用 Kim's 眼科医院的数据进行外部验证。
该机器学习模型在无需编码的情况下成功地使用收集的数据进行了训练。随机森林模型在内部 10 倍交叉验证和外部验证中分别产生了 124.8 µm 和 152.4 µm 的平均绝对误差。对于高拱高预测 (>750 µm),随机森林模型在内部和外部验证数据集上的曲线下面积分别为 0.725 和 0.760。所开发的模型比经典的统计回归模型和 Google 无代码平台表现更好。
将无代码机器学习工具应用于我们的 ICL 植入数据集,与经典回归和 Google 无代码模型相比,对术后拱高的预测更为准确。
zhuanlan.zhihu.com