Department of Surgery, Louisiana State University Health Sciences Center.
Department of Bioinnovation, Tulane University.
J Vis Exp. 2021 Apr 23(170). doi: 10.3791/62009.
Breast cancer (BC) remains a leading cause of death for women. Despite more than $700 million invested in BC research annually, 97% of candidate BC drugs fail clinical trials. Therefore, new models are needed to improve our understanding of the disease. The NIH Microphysiological Systems (MPS) program was developed to improve the clinical translation of basic science discoveries and promising new therapeutic strategies. Here we present a method for generating MPS for breast cancers (BC-MPS). This model adapts a previously described approach of culturing primary human white adipose tissue (WAT) by sandwiching WAT between adipose-derived stem cell sheets (ASC)s. Novel aspects of our BC-MPS include seeding BC cells into non-diseased human breast tissue (HBT) containing native extracellular matrix, mature adipocytes, resident fibroblasts, and immune cells; and sandwiching the BC-HBT admixture between HBT-derived ASC sheets. The resulting BC-MPS is stable in culture ex vivo for at least 14 days. This model system contains multiple elements of the microenvironment that influence BC including adipocytes, stromal cells, immune cells, and the extracellular matrix. Thus BC-MPS can be used to study the interactions between BC and its microenvironment. We demonstrate the advantages of our BC-MPS by studying two BC behaviors known to influence cancer progression and metastasis: 1) BC motility and 2) BC-HBT metabolic crosstalk. While BC motility has previously been demonstrated using intravital imaging, BC-MPS allows for high-resolution time-lapse imaging using fluorescence microscopy over several days. Furthermore, while metabolic crosstalk was previously demonstrated using BC cells and murine pre-adipocytes differentiated into immature adipocytes, our BC-MPS model is the first system to demonstrate this crosstalk between primary human mammary adipocytes and BC cells in vitro.
乳腺癌(BC)仍然是女性死亡的主要原因。尽管每年在 BC 研究上投入超过 7 亿美元,但 97%的候选 BC 药物在临床试验中失败。因此,需要新的模型来提高我们对该疾病的认识。NIH 微生理系统(MPS)计划旨在提高基础科学发现和有前途的新治疗策略的临床转化。在这里,我们介绍了一种用于生成乳腺癌微生理系统(BC-MPS)的方法。该模型改编了先前描述的培养原代人白色脂肪组织(WAT)的方法,即将 WAT 夹在脂肪来源的干细胞片(ASC)之间。我们的 BC-MPS 的新颖之处在于将 BC 细胞接种到含有天然细胞外基质、成熟脂肪细胞、驻留成纤维细胞和免疫细胞的非病变人乳腺组织(HBT)中;并将 BC-HBT 混合物夹在 HBT 衍生的 ASC 片之间。由此产生的 BC-MPS 在体外培养中至少稳定 14 天。该模型系统包含影响 BC 的多种微环境因素,包括脂肪细胞、基质细胞、免疫细胞和细胞外基质。因此,BC-MPS 可用于研究 BC 与其微环境之间的相互作用。我们通过研究两种已知影响癌症进展和转移的 BC 行为来证明我们的 BC-MPS 的优势:1)BC 运动性和 2)BC-HBT 代谢串扰。虽然 BC 运动性以前已经通过活体成像证明,但 BC-MPS 允许使用荧光显微镜在几天内进行高分辨率的延时成像。此外,虽然代谢串扰以前是使用 BC 细胞和分化为不成熟脂肪细胞的小鼠前脂肪细胞证明的,但我们的 BC-MPS 模型是第一个证明这种人原发性乳腺脂肪细胞和 BC 细胞之间的串扰的系统。